INTRODUCTION

PRESENTATION DU SUJET

La classification des objets d’une théorie est I'un des objectifs centraux de la recherche en
mathématiques. On voudrait avoir une notion d’équivalence entre les objets d’étude et ensuite
décrire aussi explicitement que possible les classes d’équivalence. Dans ce rapport, on étudiera
les surfaces de Riemann (en particulier, celles qui sont compactes), qui sont le cadre naturel
pour étudier le comportement global des fonctions holomorphes.

Au fond, une surface de Riemann est une surface topologique bidimensionnelle dotée d’une
structure complexe qui permet de définir les fonctions holomorphes et méromorphes.

Une premiere approche a la classification des surfaces de Riemann compactes serait de
considérer que deux surfaces sont équivalentes s’il existe un homéomorphisme entre elles. Dans
ce cas, ’ensemble des classes d’équivalence est tres simple : les surfaces non équivalentes sont
paramétrées par un entier g mesurant le nombre de trous. On dit que cet entier est le genre de
la surface. Par exemple, dans I'image ci-dessus, on voit une surface de genre 2.

Bien que cette classification soit certainement utile, elle ignore completement la structure
complexe dont sont dotées ces surfaces. Pour une notion plus fine d’équivalence, considérons
I’ensemble des surfaces de Riemann de genre g et disons que deux de ces surfaces sont équi-
valentes s’il existe un biholomorphisme entre elles. L’ensemble des classes d’équivalence ainsi
obtenu s’appelle I'espace de modules M.

Il est en fait utile de considérer une légere variante de cet espace. Une différentielle abélienne
w est un objet s’exprimant localement sous la forme f dz pour une fonction holomorphe f. On
considere ensuite I'espace de toutes les paires (X, w), ou X est une surface de Riemann compacte
de genre g et w est une différentielle abélienne sur X. En quotientant cet espace par un groupe
de difféomorphismes approprié, on obtient H,, I’espace de modules des différentielles abéliennes,
I'objet principal de ce rapport.

En étudiant la géométrie de cet espace, on constate qu’il est constitué de nombreuses pieces
(appelées strates) de dimensions différentes. En d’autres mots,

Hy =[] H(k1,- .., En),

ou H(ki,...,kKn) est le sous-ensemble de H, composé des différentielles abéliennes qui ont des
zéros d’ordre Ky, . .., Kk,. (Puisque k1 +. ..+ K, = 29— 2, cette décomposition est toujours finie.)




On peut naturellement identifier H(k1, ..., k,) & un ouvert de C*™~1 ce qui nous donne
une mesure canonique g sur les strates. Malheureusement, la mesure de H(k1, ..., k,) est tou-
jours infinie, ce qui ne nous permet pas d’obtenir des informations a partir des valeurs de
w(H (K1, ..., Ky)). On définit donc une hypersurface Hy(ky,. .., Ky,), similaire a le sphere unité
de R", dont on va calculer la mesure superficielle p;(H1(k1,-..,kn)). Ces valeurs s’appellent
volumes de Masur-Veech, en référence a Howard Masur et William Veech, qui ont prouvé qu’ils
sont toujours finis.

Pour calculer ces volumes, on utilise une idée remontant a Gauss qui consiste a approximer
la mesure d’un sous-ensemble de R™ par le nombre de points entiers qu’il contient.

Nos analogues a des points entiers sont appelés des surfaces a petits carreaux. Ce sont des
surfaces de Riemann obtenues a partir d’'une collection finie de carrés unitaires de R? aprés
I'identification des paires de cotés paralleles. L’exemple canonique est celui du tore.

N

L’étude de ces surfaces établit un pont entre géométrie et combinatoire, nous permettant
de faire des calculs discrets pour calculer les volumes de Mesur-Veech.

MOTIVATION ET APPLICATIONS

Tout d’abord, le fait que ce sujet soit I'un des principaux domaines de recherche de 6 lau-
réats Fields! au cours des 15 derniéres années montre qu’il s’agit d'un domaine trés actif et

1. Jean-Christophe Yoccoz, Maxim Kontsevich, Curtis McMullen, Andrei Okounkov, Artur Avila et Maryam
Mirzakhani.
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attractif. Les techniques utilisées dans 1'étude des volumes de Masur-Veech (et plus générale-
ment dans la théorie de Teichmiiller) proviennent de plusieurs domaines des mathématiques :
de la combinatoire et de la théorie des représentations, comme on le voit dans ce rapport, mais
aussi de la dynamique, de la géométrie algébrique, de la géométrie plane, etc.

Une autre motivation intéressante vient de la physique. Dans leur étude des gaz de Lorenz,
Paul et Tatyana Ehrenfest [6] ont présenté un modele consistant d’une table de billard X,
obtenue a partir du plan R? en placant des obstacles rectangulaires (dont les cotés sont paralleles
aux axes) de dimensions a et b centrées en chaque point de Z2.

Partant d’un point x € X, on joue une boule de billard sous I’angle ¢ avec vitesse unitaire.
On dénote par ¢p(z) la position de cette balle aprés un temps ¢. Le taux de diffusion d’une
trajectoire donnée est défini comme

1 p —
lim sup og [|#h(z) — ||
t—+00 logt

En considérant une marche aléatoire, le théoreme central limite impliquerait un taux de
diffusion de 1/2. Cependant, en 1980, Hardy et Weber [13] ont conjecturé que cela ne serait
pas le cas pour le modele d’Ehrenfest. Ils avaient raison. Delecroix, Hubert et Lelievre [5] ont
prouvé en 2014 que

oy 122 14(0) =l _ 2
400 logt 3

pour presque tous a, b, 0 et x. Autrement dit, le taux de diffusion ne dépend pas de la forme
de la table de billard!

Encore plus surprenant est le fait que la seule démonstration connue de ce résultat est
fortement liée aux volumes de Masur-Veech.
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INDICATIONS POUR LA LECTURE DU RAPPORT

Notre espoir avec ce rapport est qu’il soit utile pour quelqu’un qui souhaite apprendre les
bases de la théorie de Teichmiiller, des surfaces de Riemann ou de la théorie des représentations
d’un groupe fini. Au cours de ce projet, notre difficulté principale a été de trouver des références
adéquates a notre niveau mathématique. On espere donc que ce rapport permettra a un autre
groupe d’aller plus loin que ce que nous dans ces sujets magnifiques.

Ce rapport ne requiert pas de connaissances au dela des bases de ’analyse complexe, de la
théorie des groupes et des anneaux et de la théorie de la mesure. Une certaine connaissance des
variétés est stirement utile mais absolument pas nécessaire.

L’interdépendance logique entre les chapitres est illustrée dans le diagramme suivant.

1
%
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De cette maniere, quelqu'un peut apprendre la théorie des surfaces de Riemann ou la théorie
des représentations d’un groupe fini a partir de ce rapport sans étudier le reste. Dans tous les
cas, il est conseillé au lecteur de ne pas sauter I’annexe. Son contenu est utilisé dans la totalité
de ce texte.
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1
SURFACES DE RIEMANN

1.1 DEFINITIONS DE BASE ET EXEMPLES

Soit X un espace topologique. L’idée de base d'une surface de Riemann est qu’il s’agit d’'un
espace qui ressemble localement a un ouvert du plan complexe, ot on a tous les outils puissants
de 'analyse complexe. La formalisation de cette idée est ce que 'on appelle une « carte ».

Définition 1.1 — Carte. Une carte sur X est un homéomorphisme ¢ : U — U’', ou U C X
est ouvert dans X et U’ C C. On dit que la carte ¢ est centrée en p € U si p(p) = 0.

Suppose que ¢ : U — U’ et ¢ : V — V' sont deux cartes. Puisque U NV est ouvert dans
U et ¢ est un homéomorphisme,? (U NV) est ouvert dans C. De méme, (U NV) est ouvert
dans C.

La définition suivante sera motivée plus tard :

Définition 1.2 — Cartes compatibles. Deux cartes ¢ : U — U’ et ¢ : V — V' sont compatibles
si

(poz/J_l pUNV) = eUnNV)
est holomorphe. On dit que @ o 9~! et 1) o ! sont des fonctions de transition.

On observe que cette définition est symétrique parce que 1) o =t = (po~1)~! et I'inverse
d’une bijection holomorphe est aussi holomorphe.

m Exemple 1.1 Soit S? la spheére unité dans R3 :
§ = {(ryw) €2 4 4wt = 1)

On considere le plan w = 0 comme le plan complexe C, avec (z,y,0) comme z = x + yi. Soit
¢1: 5%\ {(0,0,1)} — C défini par projection de (0,0,1).

(0,0,1)

I

2. Tout homéomorphisme est ouverte.
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Plus précisément,

¢1(x7y7w) = 1_w+Z1_w

L’inverse de ¢ est

S 2
oo - (220, 200 1y
224+ 17 [224+17 |22 +1
On peut faire la méme chose depuis le pole sud. Formellement, on définit ¢ : S*\ {(0,0,—1)} —
C par projection puis conjugaison complexe :
__ 7T Y
Tltw 1+w

¢2(ﬂf, Y, w)

L’inverse de ¢, est

¢y (2) = (

Le domaine commun est S? \ {(0,0,%1)}, et est envoyé bijectivement dans C \ {0} par ¢; et
¢. La fonction de transition entre ces cartes est ¢y 0 ¢7'(2) = 1/2, qui est holomorphe. Ainsi,
les deux cartes sont compatibles. "

2R(z) —2S(z) 1— |z
|22+ 17 |22+ 17 |22 +1)°

Notez que dans cet exemple, chaque point de la sphére se trouve dans au moins un des deux
cartes. Autrement dit, chaque point de S? a une voisinage qui ressemble au plan complexe.
C’est ¢a que 'on attend d’une surface de Riemann.

Définition 1.3 — Atlas. Un atlas A sur X est une collection A = {p, : U, = Ul |a € A} de
cartes compatibles par paires dont les domaines recouvrent X. C’est-a-dire que

X = U

a€cA

Un atlas A est dit maximal s’il n’est pas contenu dans un atlas plus grand. En d’autres
termes, si A’ est un autre atlas contenant A, alors A" = A.

On voit que les cartes ¢; et ¢, définies dans I'exemple 1.1, forment un atlas {¢1, ¢o} de S2.
Toutefois, cet atlas n’est pas maximal.

On dit que deux atlas A et A’ sont équivalentes si AU A’ est aussi un atlas. Alors, étant
donné un atlas A, 'ensemble

M= A
A'~A

est un atlas maximal qui contient A. En fait, il est unique. Car si A C A, A et A sont
équivalentes et alors A" C M. On conclut que pour avoir un atlas maximal, il ne faut plus
qu’avoir un atlas quelconque. Enfin, on peut définir une surface de Riemann!

Définition 1.4 — Surface de Riemann. Une surface de Riemann est un espace topologique
séparé et connexe X, avec un atlas maximal.

Le lecteur astucieux, qui connait la définition d’une variété abstraite, peut se poser la
question suitvante : « On ne doit pas imposer que X soit d base dénombrable ? » La
réponse est que cela est toujours vrai. Un théoréme due a Rado dit que toute surface
de Riemann est a base dénombrable.



DEFINITIONS DE BASE ET EXEMPLES

On a alors plusieurs exemples de surfaces de Riemann. Le plus simple est le plan complexe.

m Exemple 1.2 — Plan complexe. Le plan complexe C, avec I'atlas {id : C — C} est une surface
de Riemann. -

» Exemple 1.3 — Sphére de Riemann. Soit X = S?, avec l'atlas défini dans 1'exemple 1.1. C’est
une surface de Riemann compact C que 'on appelle sphére de Riemann. Habituellement, on
associe chaque point z du plan complexe au point ¢; ' () de la sphére de Riemann et on appelle
le seul point de C non associé cc. m

m Exemple 1.4 — Graphes de fonctions holomorphes. Soit U un ouvert connexe de C et f : U —
C une fonction holomorphe. On considére le graphe X de f,

X = {(z /() €C?| z € U},
et la projection

™ X —=U

(2, f(2)) = 2.
On observe que 7 est un homéomorphisme dont l'inverse est z +— (z, f(2)). On conclut que =
est une carte sur X et donc X est une surface de Riemann. "

m Exemple 1.5 — Tores complexes. Soit A C C un réseau i.e. un sous-groupe discret de la forme
Zw B Zwsy, ol wy et wo sont linéairement indépendants sur R.

w1

Soit X = C/A le groupe quotient, avec la projection m : C — X. Notons que 'on peut imposer
la topologie quotient & X. C’est-a-dire, un ensemble U C X est ouvert si et seulement si 7= (U)
est ouvert dans C. Avec cette topologie 7 est continue. Ce qui implique que X est connexe (parce
que C l’est). On appelle ’ensemble

P = {)\1&)1 -+ /\2w2 | >\17 >\2 S [07 1]}

le parallélogramme fondamental. On observe que I'image de 7|p est X. On en déduit que X est
compact.
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On va alors construire un atlas pour X. Le réseau A est un sous-ensemble discret de C, il
existe donc un € > 0 tel que |w| > 2¢ pour tout w € A non nul. Ce choix de ¢ assure D(z,¢) ne
peut contenir deux points différant du réseau.

Soit D, := D(z0,¢) et on considere les fonctions 7|p, : D, — 7(D.,). Il est clair que 7|p_,
est surjective, continue et ouverte. Notre choix de € assure que 7| Dp., est injective aussi. On
conclut que 7|p, ~est un homéomorphisme.

Enfin, pour chaque z € C, on définit ¢,, par I'inverse de 7|p, . On a montré que A :=
{¢s | 20 € C} est un ensemble de cartes. Pour montrer que ces cartes sont compatibles, soit
21,29 € C et soit W =7(D,,) N7(D,,). Si W est vide, on a rien a prouver. Sinon, considérons

T:=¢,,0 gp;ll =@, om0, (W)= @, (W).

On doit montrer que 7" est holomorphe. Pour cela, on observe que moT = (mo @,,) om = .
C’est-a-dire, T'(z) et z ont la méme image par m. Donc, T(z) — z € A. Puisque T'(z) — z est
continue et A est discrete, T'(z) — z est localement constante. On conclut que T est holomorphe.

Cette surface de Riemann est généralement décrite comme un tore, obtenu en collant les
cOtés paralleles de P.

Comme on le verra dans les sections suivantes, toute surface de Riemann peut étre obtenue
selon une procédure tres similaire. n

1.2 FONCTIONS ET APPLICATIONS HOLOMORPHES

Soit X une surface de Riemann, p un point de X et f une fonction sur X définie autour de
p. Pour vérifier si f a une propriété particuliere en p, on utilisera des cartes pour transporter
la fonction au voisinage d’un point du plan complexe et on vérifiera la propriété dessus. Dans
cette section, on précisera cette notion.

La seule chose a laquelle il faut faire attention, c’est que la propriété que 1’on vérifie doit
étre indépendante de la carte choisie.

Définition 1.5 — Fonctions holomorphes. On dit qu'une fonction f: W — C,ou W C X, est
holomorphe en p € W si pour toute carte ¢ : U — U’, avec p € U, f o ¢! est holomorphe
en ¢(p). On dit qu'une fonction est holomorphe sur un ensemble si elle est holomorphe en
chaque élément de cet ensemble.

On notera l'espace des fonctions holomorphes sur W C X par Hol(WW). C’est ici que 1'on
justifie la définition de cartes compatibles.



FONCTIONS ET APPLICATIONS HOLOMORPHES

Proposition 1.1 Soit f : W — C une fonction définie autour de p € X. S’il existe une carte
©:U — U, avec p € U, telle que f o o=t soit holomorphe en ¢(p), f est holomorphe en p.

Démonstration. Soit ¢ une autre carte quelconque dont le domaine contient p. On doit
montrer que f o1 ~! est holomorphe en ¥ (p). Mais

fov™ =(fop ol(poy™).
Donc, f o1~! est une composition de fonctions holomorphes et donc holomorphe. O

Comme dans le cas des fonctions holomorphes définies dans le plan complexe, si f et g sont
holomorphes, f + g, fg et f/g (étant donné que g ne s’annule pas) le sont également.

s Exemple 1.6 Soit X = C, le sphere de Riemann, et f : X — C. On a que f est holomorphe
en oo si et seulement si f(1/z) est holomorphe en z = 0. .

Les concepts associés aux fonctions méromorphes se généralisent également de la méme
maniere aux surfaces de Riemann.

Définition 1.6 Soit f une fonction holomorphe définie dans une voisinage pointé de p € X.

a) On dit que f a une singularité apparente en p si pour toute carte ¢ : U — U’ avec
p €U, fop ! aune singularité apparente en o(p).

b) On dit que f a un pole en p si pour toute carte ¢ : U — U’, avec p € U, fop™! a un
pole en ¢(p).

c) On dit que f a une singularité essentielle en p si pour toute carte ¢ : U — U’, avec
p €U, foye ! aune singularité essentielle en ¢(p).

Comme avant, il suffit de vérifier les énoncés ci-dessus pour une seule carte.

Proposition 1.2 Avec les notations ci-dessus, f a une singularité apparente (resp. pole, sin-
gularité essentielle) si et seulement s’il existe une carte ¢ : U — U’, avec p € U, telle que
f o1 ait une singularité apparente (resp. pole, singularité essentielle) en ¢(p).

On peut alors définir une fonction méromorphe.

Définition 1.7 On dit qu’une fonction f: W — C, ou W C X, est méromorphe en p € W si
elle est holomorphe, a une singularité apparente, ou a un pdle en p. On dit qu’une fonction
est méromorphe sur un ensemble si elle est méromorphe en chaque élément de cet ensemble.

m Exemple 1.7 Soit A un réseau, X = C/A et 7 : C — X la projection sur le quotient. Soit
f:W — C,ou W C X, une fonction méromorphe. Alors g := fom est méromorphe en 7= (W)
et A-périodique. C’est-a-dire, g(z + w) = g(z) pour tout z € 7 1(W) et w € A.

Une fonction méromorphe A-périodique est appelé fonction elliptique. On a alors une cor-
respondance entre fonctions elliptiques sur C et fonctions méromorphes sur C/A. m

Certains théoremes concernant les fonctions holomorphes et méromorphes sont immeédia-
tement hérités des théoremes correspondants concernant les fonctions définies sur des ouverts
dans le plan complexe.
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Théoréme 1.3 — Principe des zéros isolés. Soit f une fonction méromorphe définie sur un
ouvert connexe W d’une surface de Riemann X. Si f n’est pas identiquement nulle, les zéros
et les poles de f forment un sous-ensemble sans point d’accumulation de W.

Le théoreme ci-dessus a une implication immeédiate pour les surfaces compactes.

Corollaire 1.4 Soit f une fonction méromorphe non nulle sur une surface de Riemann com-
pacte X. Alors f a un nombre fini de zéros et de poles.

Démonstration. Soit S ’ensemble de zéros et poles de f. Puisque S n’a pas de point d’accu-
mulation, S est fermé et donc compact (puisque X l'est). Comme

Hz} Cc X |z € S}

est un recouvrement ouvert de S, il existe une sous-recouvrement finie. Le résultat suit. O

Théoréeme 1.5 — Principe du prolongement analytique. Supposons que f et ¢ soient deux
fonctions méromorphes définies sur un ouvert connexe W d’une surface de Riemann X.

Supposons que f = g sur un sous-ensemble S C W qui a un point d’accumulation dans W.
Alors f = g sur W.

Théoréme 1.6 — Principe du maximum. Soit f holomorphe sur un ouvert connexe W d’une
surface de Riemann X. Supposons qu'il existe un point p € W tel que |f(x)| < |f(p)| pour
tout x € W. Alors f est constante sur W.

Théoréme 1.7 — Théoréme de I'application ouverte. Soit f holomorphe non-constante sur un
ouvert connexe W d’une surface de Riemann X. Alors f est une application ouverte.

On a le corollaire suivant, qui est un théoréme ne concernant que les surfaces de Riemann,
en ce sens qu’il n’existe pas d’analogue précis pour les fonctions sur le plan complexe.

Corollaire 1.8 Soit X une surface de Riemann compacte. Supposons que f soit holomorphe
sur tout X. Alors f est une fonction constante.

Démonstration. La fonction f est continue, donc |f| atteint une valeur maximale M. Soit
p un point sur la surface avec |f(p)| = M. Alors |f| atteint un maximum local en p, est
donc constante dans un voisinage de p. Par conséquent, I'ensemble des x tels que |f(x)] = M
est ouvert. Comme il est également fermé (par continuité) ce doit étre toute la surface (par
connexité). Alors f(X) est contenue dans un cercle de rayon M, ce qui contredit le théoreme
de 'application ouverte. O]

Pourquot cette preuve ne fonctionne-t-elle pas pour un sous-ensemble compact K de
C ? Dans ce cas, on ne peut pas garantir que [’ensemble des points ot la fonction atteint
son module maximum est ouvert dans K. Pensez a la fonction identité restreinte au
disque unité, par exemple. Dans le cas d’une surface de Riemann, [’existence de cartes
autour de tout point résout ce probleme.
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Ce théoreme montre que, si les fonctions C° sont immensément utiles dans 1’étude des
variétés différentielles, les fonctions holomorphes ne le sont pas énormément dans I’étude des
surfaces compactes de Riemann : elles sont trop restrictives. Ce probleme sera bientot résolu
en considérant les différentielles holomorphes.

On définit alors des applications entre deux surfaces de Riemann X et Y.

Définition 1.8 — Applications holomorphes. On dit qu'une applications f : W — Y. ou
W C X, est holomorphe en p € W si pour toutes les cartes ¢ : U — U’ avec p € U, et
Y :V = V' avec f(p) €V, 1Yo fop ! est holomorphe en p(p). On dit qu'une application
est holomorphe sur un ensemble si elle est holomorphe en chaque élément de cet ensemble.

On appellera constamment des applications holomorphes entre des surfaces de Riemann des
revétements holomorphes.® Une application holomorphe bijective dont I’application réciproque
est également holomorphe est appelée biholomorphe.

On notera I’espace des applications holomorphes entre W C X et Y par Hol(W;Y'). Comme
auparavant, il est possible de vérifier 'homomorphicité d’une application avec n’importe quelle
paire de cartes. Les applications holomorphes entre les surfaces de Riemann se comportent
comme prévu.

Proposition 1.9 Soient X, Y, Z des surfaces de Riemann.
a) Si f: X — Y est holomorphe, alors f est €.

b) Si f: X =Y et g:Y — Z sont holomorphes, alors la composition go f: X — Z est
holomorphe aussi.

On présente ici quelques généralisations des théoremes classiques sur les fonctions holo-
morphes sur le plan complexe.

Théoréeme 1.10 — Théoréme de I'application ouverte. Soit f : X — Y un revétement holo-
morphe entre des surfaces de Riemann. Alors f est une application ouverte.

Théoréme 1.11 Soit f : X — Y une bijection holomorphe entre des surfaces de Riemann.
Alors, 'application réciproque f~! est aussi holomorphe.

En d’autres termes, ce théoréme dit que pour qu’une application soit biholomorphe, il suffit
qu’elle soit holomorphe et bijective.

Théoréeme 1.12 — Principe du prolongement analytique. Supposons que f et g soient deux
applications holomorphes entre des surfaces de Riemann X et Y. Supposons que f = g sur
un sous-ensemble S C X qui a un point d’accumulation dans X. Alors f = g.

Théoréme 1.13 Soit f : X — Y un revétement holomorphe entre des surfaces de Riemann X
et Y. Alors, pour chaque y € Y, f~!(y) est un sous-ensemble de X sans point d’accumulation.

3. Hors du contexte des surfaces de Riemann, ce que nous appelons un revétement est généralement appelé
un revétement ramifié.
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On a aussi une généralisation du corollaire 1.8 aux applications holomorphes :

Théoreme 1.14 Soit X une surface de Riemann compacte et f : X — Y un revétement
holomorphe. Alors Y est compacte et f est surjective.

Démonstration. Puisque f est holomorphe et que X est ouvert en lui-méme, f(X) est ouvert
dans Y par le théoréme d’application ouverte. D’autre part, puisque X est compact, f(X) est
compact et puisque Y est séparé, f(X) est fermé dans Y. D’ou, f(X) =Y. H

De méme que les endomorphismes diagonalisables qui peuvent étre exprimés sous une forme
simple en prenant une base bien choisie, les revétements holomorphes peuvent étre exprimés
sous une forme simple en prenant des cartes bien choisies.

Théoréme 1.15 — Structure locale des revétements holomorphes. Soit f : X — Y un revé-
tement holomorphe entre des surfaces de Riemann et soit p € X. Alors il existe deux cartes
@:U — U et1h:V — V' centrées en p et f(p), respectivement, et un unique entier positif
m tels que

Yo foypi(z)=2"

Démonstration. Etant donné une carte 1) : V — V' centrée en f(p), on choisit une carte
¢ : U — U’ quelconque centrée en p. Alors la série entiere de 9o f o o1 est

Yo fog Hw)="> e,
k=m

ol ¢, 0 et m > 1 (car o fo@ 1(0) =0). Ainsi, il suit que ¢ o f o g~ (w) = w™S(w), ou
S est holomorphe en 0 et S(0) # 0. Dans ce cas, il existe une fonction R, holomorphe dans un
voisinage de 0, telle que R(w)™ = S(w) et donc ¥ o f o o ! (w) = (wR(w))™.

Soit T'(w) = wR(w). Puisque 7"(0) = R(0) # 0, on a que T est inversible dans un voisinage
de 0. On en déduit que ¢ := T o ¢ est une carte centrée en p. Comme

hofopTt=(pofop HoT™,
on conclut que ¥ o f o t(z) = 2" O

Définition 1.9 Soit f : X — Y un revétement holomorphe entre des surfaces de Riemann et
soit p € X. On dit que 'entier m du théoreme 1.15 est la multiplicité de f en p et on le
dénote Mult,(f).

Si Mult,(f) > 2, on dit que f est ramifié en p et que p est un point de ramification pour
f. Dans ce cas, on appelle f(p) un point de branchement.

Dans le cas de surfaces définies a partir d’'un quotient, on dira qu’un point de la surface est
un point de branchement s’il s’agit d’un point de branchement pour I'application quotient.

Selon le principe des zéros isolés, I’ensemble des points de ramification est discret. Si la
surface de Riemann X est compacte, cet ensemble est fini. Dans ce cas I’ensemble de points de
branchement est aussi fini.
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Un moyen simple de calculer la multiplicité d’une application f : X — Y en un point p € X
consiste a dessiner un petit lacet autour de p dans X. Si I'image de ce lacet par f tourne m
fois autour de f(p) dans Y, alors la multiplicité de f en p est m.

m Exemple 1.8 On peut faire des constructions analogues a celle de I'exemple 1.5 avec des
quotients plus complexes. Par exemple, considérons 1’ensemble ci-dessous, composé par 3 carrés
unités dans le plan complexe, dont les cotés de méme couleur sont identifiés par translation.

Soit C' I'ensemble des carrés et L la surface de Riemann obtenue par 'identification des cotés.
Il est évident que tous les points a 'intérieur des carrés et que tous les intérieurs des cotés ne
sont pas des points de ramification. Comme tous les sommets sont équivalents (ils ont la méme
image pour I'application quotient), il suffit de vérifier si un sommet quelconque est un point de
ramification. On fait donc un petit lacet autour du sommet inférieur gauche, en numérotant les
étapes nécessaires pour revenir au méme point.

7

DENG

N N [

On observe que 'angle total parcouru est de 67, ce qui implique une multiplicité de 'application
quotient a ce sommet égale a 3. Il suit que les sommets sont des points de ramification. m

Soit X une surface de Riemann compacte et f : X — Y un revétement holomorphe. Le
théoreme 1.14 dit que nécessairement Y est compact et que f est surjective. On se demande
donc dans quelle mesure f est loin d’étre une bijection. C’est-a-dire que si y € Y, on cherche la
taille de f~'(y). Comme d’habitude, compter les éléments en tenant compte de la multiplicité
nous donne une belle formule.
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Théoréme 1.16 Soit f : X — Y un revétement holomorphe entre deux surfaces de Riemann
compactes. Alors 'entier
Z Mult,(f)

pef~'(y)

ne dépend pas de y € Y. Cet entier est appelé le degré de f et est dénoté deg(f).

Dans les conditions de ce théoreme, ’ensemble des points de branchement est fini et donc
presque tous (c’est-a-dire tous sauf un nombre fini) les points ont exactement deg(f) images
réciproques.

|
|
|
|
|
| |
| |
T !
! !
! !
| |
| |
| |
& &
; @ @

Puisque la multiplicité d’un revétement holomorphe en un point p est toujours positive, on
a le corollaire ci-dessous.

Corollaire 1.17 Soit f : X — Y un revétement holomorphe entre deux surfaces de Riemann
compactes. Alors f a degré 1 si et seulement si f est une bijection.

1.3 CLASSIFICATION TOPOLOGIQUE DES SURFACES COMPACTES

L’un des principaux objectifs de notre étude est de trouver des relations d’équivalence adé-
quates aux surfaces de Riemann compactes, puis de décrire les classes d’équivalence. Une pre-
miere tentative, plus superficielle, consisterait a dire que deux surfaces de Riemann sont équi-
valentes §’il existe un homéomorphisme (c’est-a-dire une bijection continue dont la réciproque
est aussi continue) entre elles. C’est cette approche que 'on adoptera dans cette section.

Un objet essentiel sera le polygone défini ci-dessous.

Définition 1.10 Soit g > 0 un entier. Pour g > 1 on définit F, comme le polygone dont les
arétes sont nommées

!/ / !/ /
ar, by, ay, by, .oy ag, by, ag, by

F b, dans le sens

Les arétes a;,b; sont parcourues dans le sens anti-horaire et les arétes a;, D]

horaire. Pour ¢ = 0, on définit Fy comme le polygone & deux arétes a, a’.
Enfin, on note |F,| la surface (topologique) obtenue en identifiant a; avec a; et b; avec b,
en tenant compte de leurs orientations respectives.
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Pour comprendre les surfaces |Fy|, on va les « construire ». Premiérement, si ¢ = 0, la
surface obtenue en quotientant est le sphere de Riemann :

Pour g = 1, on obtient un tore :

a/

v b~

a

Pour g > 2, on se rend compte que la transformation g — g + 1 équivaut a mettre une anse
sur la surface |Fy|.

/b

a a
On conclut que |Fy| est une sphere avec g anses. De maniére équivalente, pour g = 0, |F|
est une sphere et, pour g > 1, un tore avec g trous.
L’importance de ces surfaces réside dans le fait que toute surface de Riemann compacte
est homéomorphe a |Fj| pour un certain entier g > 0. De plus, deux de ces surfaces sont
homéomorphes si et seulement si elles ont le méme g.

Théoréme 1.18 Soit X une surface de Riemann compacte. Alors, il existe un unique entier
g > 0 tel que X soit homéomorphe & |F,|. On dit que cet entier g est le genre de X. Enfin,
deux surfaces n’ayant pas le méme genre ne sont pas homéomorphes.

Ce théoreme résout notre probleme décrit au début de la section. Si I’on considere deux sur-
faces de Riemann compactes comme équivalentes si elles sont homéomorphes, alors ’ensemble
des classes d’équivalence est exactement ’ensemble des entiers naturels N.
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Cette classification, bien que simple, est trop faible : elle ignore compléetement la structure
complexe des surfaces de Riemann. Dans le chapitre suivant, on dira que deux surfaces de
Riemann avec le méme genre g sont équivalentes si elles sont biholomorphes. L’ensemble des
classes d’équivalence est I'espace de modules M, dont la géométrie sera étudiée. On verra que
si g =0, il n’y a qu’une surface de Riemann & biholomorphisme prées : la sphere de Riemann.
Pour g = 1, toute surface est biholomorphe a un tore complexe et si ¢ > 1, I'’ensemble des
classes d’équivalence est continu et de dimension 3g — 3.

1.4 LA CARACTERISTIQUE D’EULER

Dans les 2 prochaines sections, on présentera quelques outils fondamentaux de la topologie
algébrique. L’accent sera mis principalement sur le développement de l'intuition de ces outils
plutét que sur le lien logique entre les résultats. Pour cette raison, plusieurs énoncés seront
omis. Le lecteur intéressé peut trouver les démonstrations dans [19].

Soit X une surface de Riemann compacte. Une triangulation de X est une décomposition
de X en sous-ensembles fermés, chacun homéomorphe & un triangle, de sorte que deux triangles
quelconques soient disjoints, ou ne se rencontrent qu’a un seul sommet ou ne se rencontrent
que le long d’une seule aréte.

Un corollaire direct du théoreme 1.18 est le fait que chaque surface compacte de Riemann
possede une triangulation finie.

I Proposition 1.19 Toute surface de Riemann compacte X admet une triangulation finie.
Les triangulations sont importantes car elles permettent de définir la caractéristique d’Euler
d’une surface compacte de Riemann.

Définition 1.11 — Caractéristique d’Euler. Etant donné une triangulation de X, avec v
sommets, a arétes et t triangles. La caractéristique d’Euler de X est le nombre entier
X(X)=v—a+t.

Un fait topologique important est que la caractéristique d’Euler est indépendante de la
triangulation choisie, ce qui justifie notre notation qui ne la prend pas en compte.

m Exemple 1.9 La sphére de Riemann a caractéristique d’Euler 2. Pour montrer cela, on observe
la triangulation ci-dessous.

Cette triangulation a 4 sommets, 6 arétes et 4 triangles. D’oil, x(C) =4 — 644 = 2. .
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Pour calculer la caractéristique d’Euler d’un tore complexe, on pourrait afficher une trian-
gulation explicite d'un tore. Cependant, il est plus facile de voir cela en utilisant son parallélo-
gramme fondamental.

m Exemple 1.10 Les tores complexes ont caractéristique d’Euler 0. Etant donné un tore com-
plexe C/A, on peut calculer sa caractéristique d’Euler en triangulant son parallélogramme
fondamental. Pour cela, on dessine une diagonal de w; a ws.

On a v = 1 car tout point du réseau est équivalent a 0, a = 3 car les arétes opposés du
parallélogramme sont équivalents et ¢ = 2. Alors, x(C/A) =1-3+2=0. .

En fait, on peut généraliser cette méthode pour trouver la caractéristique d’Euler de toute
surface de Riemann compacte!

Théoréme 1.20 Soit X une surface de Riemann compacte de genre g. Alors la caractéristique
d’Euler de X est
X(X)=2-2g.

Démonstration. Si g > 1, il suffit de trianguler le polygone Fj :

/
bg a1

Cette triangulation 4¢ arétes internes, qui correspondent a 4g arétes sur X. Cependant, des
4g arétes latérales, seules 2g sont distinctes sur X. Tous les 4¢ triangles de F, deviennent
des triangles distinctes dans X. Enfin, comme tous les sommets latéraux sont identifiés, la
triangulation de X n’a que 2 sommets. On en déduit que

X(X)=2— (49 + 29) + 49 = 2 — 2g.

Puisque le théoreme est trivialement vrai dans le cas g = 0, le résultat suit. O
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En revanche, on peut utiliser le théoreme 1.20 pour calculer le genre de certaines surfaces.

m Exemple 1.11 Soit X la surface de Riemann de ’exemple 1.8. Pour calculer le genre de X,
on va la trianguler de la facon suivante :

Comme tous les sommets sont équivalents, cette triangulation n’a qu'un seul sommet. On a
une aréte latérale de chaque couleur plus les 5 arétes des triangles et le nombre de triangles est
certainement 6. On conclut que

X(X)=1-94+6=-2.

D’ou le genre de X est 2. C’est-a-dire que topologiquement cette surface de Riemann est un
tore a deux trous,

<

L}
.
L4

ce qui n’est pas évident du tout. n

La constance du degré pour un revétement holomorphe, combinée a la théorie de la caracté-
ristique d’Euler, nous donne une formule importante reliant les genres du domaine et de I'image
avec le degré et la multiplicité du revétement.

Théoreme 1.21 — Riemann-Hurwitz. Soit f : X — Y un revétement holomorphe entre des
surfaces de Riemann compactes de genre g et ¢, respectivement. Alors,

29 — 2 =deg(f)(2¢' — 2) + >_ (Mult,(f) — 1).

peX

Notez que puisque f est une application entre des surfaces de Riemann compactes,
l’ensemble des points de ramification de f est fini et donc la somme qui apparait dans
la formule de Riemann-Hurwitz l’est également.
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Démonstration. Prenons une triangulation de Y, de sorte que chaque point de branchement
de f soit un sommet. Supposons qu’il y ait v sommets, a arétes et ¢ triangles. Soulevons cette
triangulation & X via 'application f et supposons qu’il y ait v' sommets, o’ arétes et t' triangles
sur X. Notez que chaque point de ramification de f est un sommet sur X.

Puisque les points de ramification sont les sommets des triangles, ¢ = deg(f)t et @’ =
deg(f)a. On peut compter le nombre d’images réciproques d’'un point y € Y quelconque comme

i)=Y T=deg(f)— > (Multy(f) - 1).

pef~1(y) pef~1(y)

Par conséquent, le nombre total de sommets de X est

> |deg(f)— > (Mult,(f) —1)

yey pEf1(y)
sommet

=deg(flv— > Z (Mult,(f) — 1)

yeY pef-l(y)

sommet
—deg(flo— Y (Mult,(f) —1).
peX
sommet
On en déduit que
29 — 2= —x(X)
— o + a — ¢t
= —deg(f)v+ > (Multy(f) — 1)+ deg(f)a — deg(f)t
peX
sommet
= —deg(f)x(Y) + >_ (Mult,(f) —1)
peX
sommet
= deg(f)(29' = 2) + >_ (Mult,(f) — 1),
peX
ou la derniere égalité vaut parce que tout point de ramification est un sommet de X. O]

Outre que la formule de Riemann-Hurwitz est tres pratique pour calculer le genre de cer-
taines surfaces, elle a le corollaire suivant d’une grande utilité.
Corollaire 1.22 En utilisant la notation du théoréme précédent :
1. On a toujours g > ¢’. En particulier, si g = 0 alors ¢’ = 0;
2. Sig=0et g>0,alors f est ramifié;
3. Si g =1, f n’est pas ramifié si et seulement si g = 1;
4. Si f n’est pas ramifié et ¢’ > 1, alors soit g = ¢’ et deg(f) = 1, soit g > ¢'.

Dans plusieurs situations, il est utile de « percer » les surfaces de Riemann pour les rendre
plus « bien comportées ». Plus précisément, si X est une surface de Riemann compacte, on
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consideére X'\ P, ou P est un ensemble discret (généralement donné par les points de ramification
d’un certain revétement holomorphe). Bien entendu, X \ P est un sous-ensemble ouvert de X
et constitue donc une surface de Riemann en soi. On dira que les surfaces de Riemann ainsi
obtenues sont des surfaces de Riemann perforées.

1.5 LE GROUPE FONDAMENTAL

La topologie algébrique est I’étude des regles reliant les espaces topologiques aux objets d'une
catégorie algébrique donnée C telles que les morphismes dans Top (les applications continues),
la catégorie des espaces topologiques, soient liés aux morphismes de C (les homomorphismes), en
préservant les notions de composition et d’isomorphisme. Ces regles sont officiellement connues
sous le nom de foncteurs. Dans cette section, on étudiera 1'un des principaux foncteurs de la
topologie algébrique : le groupe fondamental. On verra cet objet dans le contexte des surfaces de
Riemann, mais il existe avec peu ou pas de modification dans les espaces topologiques généraux.
Le lecteur intéressé par ce contexte plus général peut consulter le livre [14].

Le groupe fondamental sera défini en termes de déformations de chemins sur la surface de
Riemann. On rappelle qu'un chemin dans X est une application continue f : I — X ou [ est
I'intervalle unitaire [0, 1].

Définition 1.12 — Homotopie. Soit X une surface de Riemann. Une homotopie de chemins
dans X est une famille f, : I — X, 0 <t <1, telle que

1. Les points f;(0) = zo et f;(1) = x1 sont indépendantes de t;
2. L’application associé F': I x I — X, définie par F(s,t) = f;(s) est continue.

Lorsque deux chemins fj et f; sont reliés par une homotopie f;, ils sont dits homotopes.

L’homotopie est la formalisation de la notion intuitive d’une déformation continue d’un
chemin.

Zo €

fo

m Exemple 1.12 — Homotopies Linéaires. Deux chemins fy, fi quelconques dans C ayant la
méme origine x( ainsi que la méme extrémité x; sont homotopes par I’homotopie

fi(s) == (1 —t) fo(s) + tfi(s).

Plus généralement, tous les chemins dont l'origine et I'extrémité sont fixées dans un sous-
ensemble convexe de C sont homotopes. n
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La relation d’homotopie dans les chemins avec des origines et extrémités fixes forme une
relation d’équivalence. On notera la classe d’équivalence d'un chemin f pour [f] et 'appellera
la classe d’homotopie de f.

Etant donné deux chemins f, g : I — X tels que f(1) = ¢(0), il existe un chemin produit
qui traverse d’abord f puis g, défini par la formule

£(25) 50 <
g(2s —1) si

IA A
— N

(ﬁﬂﬁz{ <Z

1
2

Ce produit est compatible avec les classes d’homotopie. Autrement dit, si fy, fi sont ho-
motopes par 'homotopie f; et go, g1 sont homotopes par ’homotopie g;, alors f; - g; est une
homotopie reliant fo - go et f1 - g1.

f1 g1

fo 9o

En particulier, si 'on limite notre attention aux chemins f dont l'origine et ’extrémité sont
égaux (c’est-a-dire tels que f(0) = f(1)), ce produit est toujours bien défini. Ces chemins sont
appelés lacets et le point commun zo = f(0) = f(1) est appelé le point de base.

On peut maintenant définir le groupe fondamental, introduit en 1895 par Henri Poincaré
dans son article Analysis Situs[23] qui a révolutionné les mathématiques.

Définition 1.13 — Groupe fondamental. Soit X une surface de Riemann et xy un point de
X. L’ensemble de toutes les classes d’homotopie [f] des lacets f : I — X au point de base
xo est noté m (X, zg) et est appelé le groupe fondamental de X basé en xg. Le structure de

groupe est donné par [fl][g] :== [f - g].

Le fait que 71 (X, x¢) soit un groupe est une simple vérification des axiomes. Etant donné un
élément [f] de 71 (X, xg), son inverse est donné par [s — f(1 — s)] =: [f]. L’identité du groupe
est certainement le lacet constante égal a xg.

L’index 1 du groupe fondamental provient du fait que 7 (X, x¢) n’est que le premier élément
d’une suite de groupes m,(X, zo), appelés groupes d’homotopie, définis de maniére analogue,
mais en utilisant le cube n-dimensionnel 1™ a la place de I.

Une requéte naturelle est la dépendance de m(X, ) sur le point de base xy. Puisque
71(X, zg) concerne uniquement la composante connexe par arcs de xg, il n’existe une relation

entre m (X, zg) et m (X, x1) que 8’1l existe un chemin h : I — X reliant xq et x.

i f

X1

Dans ce cas, pour chaque lacet f basé en z1, le lacet (h- f)-h est basée en zg. En fait, cette
application définit un isomorphisme de groupe.
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Proposition 1.23 Soit g, x; des points d’une surface de Riemann X reliés par un chemin
h: I — X. Alors, application

est un isomorphisme.

Formellement, il faudrait écrire [(h - f) - h], car le produit des chemins n’est pas as-
sociatif. Cependant, (h - f) - h est clairement homotope a h - (f - h), ce qui rend la
distinction inutile dans le contexte des classes d’équivalence.

Démonstration. Soit P, cette application. D’abord, P}, est un homomorphisme parce que

Po((fllg]) = Pu([f -gD) =[h-f-g- B =[h-f-h-Th-g-h]=Pu((f])Pu(lg])-
Aussi, P, est un isomorphisme parce que P est son inverse. L]

Ainsi, comme toute surface de Riemann X est connexe par arcs, le groupe (X, x) est
indépendant du choix du point de base & isomorphisme pres. On note donc (X, zg) tout
simplement par 7 (X).

Ci-dessous, on présente quelques croquis de démonstration de certains groupes fondamen-
taux. Dans toutes les « démonstrations », on montrera que 71(X) est un groupe généré par un
ensemble d’éléments et satisfaisant une relation donnée. Cependant, on ne va pas montrer qu’il
s’agissait de la seule relation satisfaite par ces éléments. Néanmoins cela sera vrai dans les deux
cas.

s Exemple 1.13 — Sphére a n trous. Soit X = C \ {p1,...,pn} la sphere de Riemann perforée
a n trous. Le groupe fondamental 71 (X) est généré par les classes d’homotopie des lacets
f1, fa, - -, fu contournant chacun 1'un des trous.

La courbe f; - fo-...- f, peut étre contractée en un point, ce qui implique la relation
AL [fal = 1d
dans 71 (X). On en déduit que m(X) = (g1,---,9n | g1 gn = €). .
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m Exemple 1.14 — Surface de genre g. Pour calculer le groupe fondamental d'une surface de
Riemann X de genre g, considérons le polygone F,. Puisque tous les sommets de [, sont
équivalents, les arétes ay, by, ay, by, ..., ag,by,a;, b, de Fy forment des lacets dans X. Aussi, on
sait que a; et a; ont une orientation opposée et que en parcourant tous les arétes, on revient au
point d’origine. On conclut que 71 (X) est le groupe engendré par 2g éléments Ay, By, ..., Ay, By
satisfaisant la relation

[Al, Bl][AQ, BQ] PN [Ag, Bg] =€,

ot [A;, Bi] = A;B;A;* B! est le commutateur de A; et B;. En particulier, le groupe fondamental
des tores complexes n

Comme il a été dit au début de cette section, en plus du groupe fondamental étant une regle
qui identifie chaque espace topologique a un groupe, on peut aussi identifier chaque application
continue a un homomorphisme.

Supposons ¢ : X — Y est une application continue entre des surfaces de Riemann telle que
©(xo) = yo. Alors ¢ induit un homomorphisme ¢, : 7 (X, xo) = m1(Y, 30), défini en composant
les lacets f : I — X basés en xy avec @, c’est-a-dire, . ([f]) := [p o f].

Les deux propriétés fondamentales de ’homomorphisme induit sont :*

— SiYy: X - Yetp:Y — Z sont des applications continues telles que 1(zg) = yo et
v(yo) = 20, alors (9 oY), = s 0y

— L’identité idy : X — X de X induit I'identité ids (x4, @ T1(X,20) = m (X, 20) de
(X, 29). Clest-a-dire que idx, (x,2,) = (idx)..

Une application immédiate de ces propriétés est le fait fondamental que si ¢ est un homéo-
morphisme, alors ¢, est un isomorphisme de groupes. C’est ce qui fournit la grande utilité de
la topologie algébrique. Montrer que deux espaces topologiques sont homéomorphes est géné-
ralement simple : il suffit d’afficher un homéomorphisme. Par contre, il est difficile de montrer
que deux espaces topologiques ne sont pas homéomorphes. Cependant, on a maintenant un
moyen systématique de procéder : si les groupes fondamentaux de deux espaces topologiques
sont différents, ils ne sont pas homéomorphes!

m Exemple 1.15 Les considérations ci-dessus permettent de montrer facilement que deux surfaces
de Riemann compactes sont homéomorphes si et seulement si elles ont le méme genre. En fait,
soit X une surface de genre g et soit m1(X) son groupe fondamental (calculé dans I'exemple
1.14). L’abélianisé d'un groupe G est le groupe G/[G,G], ou [G,G] est le sous-groupe de G
engendré par [g1, go] ol g1, 92 € G. Dans notre cas, G = m;(X) et alors,

m1(X)

__ P2
M) X))

On sait déja que deux surfaces de Riemann compactes homéomorphes ont le méme genre.
Puisque deux surfaces de genre différent ont un groupe fondamental abélianisé différent, elles
ne sont pas homéomorphes. "

4. Ces propriétés font du groupe fondamental un foncteur (covariant) de la catégorie des espaces topologiques
pointés vers la catégorie des groupes.
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1.6 LE THEOREME D’UNIFORMISATION

A ce stade, on peut déja faire de grands progres dans la classification des surfaces de Rie-
mann compactes a biholomorphisme pres. Le théoreme ci-dessous est 1'un des résultats les plus
importants de la théorie des surfaces de Riemann.

Théoreme 1.24 — Théoréeme d’uniformisation (Poincaré - Koebe). Soit X une surface de
Riemann simplement connexe. Alors X est biholomorphe a 'une des trois surfaces suivantes :

— Le plan complexe C;
— Le disque unité D

— La sphere de Riemann C.

Puisqu’une surface de Riemann compacte est simplement connexe si et seulement si elle
est de genre 0, ce théoreme implique tout de suite qu’il n’existe qu’une surface de Riemann
compacte de genre 0 a biholomorphisme pres. Pour classer les autres surfaces compactes, il
faudra associer une surface simplement connexe a chacune d’elles. Heureusement, il existe un
moyen canonique de le faire, que 'on va maintenant étudier.

Définition 1.14 — Revétement d’une surface. Soit X une surface de Riemann. Un revétement
de X est une surface de Riemann X, avec une application continue p : X — X telle que
tout point x € X ait un voisinage U C X tel que p~!(U) soit une union (non vide) d’ouverts
disjoints dans X, chacun d’eux étant envoyé de maniére homéomorphe sur U par p.

1l est important de distinguer la notion analytique de revétement holomorphe de la no-
tion topologique de revétement. En fait, un revétement holomorphe est un revétement
au sens de la définition 1.14 si et seulement si il n’est pas ramifié.

En effet, on a déja rencontré des revétements !

m Exemple 1.16 Soit X = C/A un tore complexe et 7 : C — X 'application quotient. Alors C
(avec cet application) est un revétement de X!

C’est exactement le fait que C est simplement connexe, alors que X ne l'est pas, qui nous
permettra d’utiliser le théoreme 1.24 pour classifier les surfaces compactes. n
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L’exemple 1.16 n’est pas particulier : toute surface de Riemann X a un revétement simple-
ment connexe.

Théoréme 1.25 — Revétement universel. Soit X une surface de Riemann. Alors il existe un
revétement simplement connexe (X' ,p) de X. En outre, p est une application holomorphe
et X est universel en ce sens que si (Y, q) est un autre revétement de X alors il existe un
revétement f: X — Y tel que le diagramme

p
_
/

commute. On dit que X est le revétement universel de X.

S

X

f

~e-Tioe

Comme on pouvait s’y attendre, le revétement universel est unique & isomorphisme pres. ®

L’étude des revétements est profonde et intéressante. Cependant, pour notre étude, on n’aura
besoin que des propriétés fondamentales suivantes :

— Le groupe fondamental 7 (X) agit de facon naturelle sur X ;
— Il y a un biholomorphisme entre X /7 (X) et X.

Le lecteur intéressé a étudier ces aspects plus en détail est invité a lire le chapitre 4 de
[24]. Quoi qu’il en soit, le point important est que ces considérations permettent de conclure le
théoreme suivant.

Théoréme 1.26 — Uniformisation des surfaces de Riemann compactes. Soit X une surface de
Riemann compacte et soit g son genre. Alors,

— Si g = 0, X est biholomorphe a la sphere de Riemann oF
— Si g =1, X est biholomorphe a un tore complexe C/A;
— Si g > 2, X est biholomorphe au quotient D/G, ou G est un groupe fini.

1.7 FORMES DIFFERENTIELLES

La force de ’analyse complexe repose sur deux piliers : la rigidité des fonctions holomorphes,
ce qui nous permet d’obtenir de bons résultats en calcul différentiel, et la compatibilité de ces
résultats avec les intégrales de chemin. On souhaiterait transporter ces résultats au contexte
des surfaces de Riemann. Cependant, on verra que le concept de fonction holomorphe n’est pas
la généralisation idéale, ce qui nous amenera a étudier les formes différentielles.

5. Cela signifie que si p; : X 1 — X et py : X3 — X sont deux revétements universels de X, alors il existe un
homéomorphisme f : X7 — X5 tel que p2 o f = p1. (Rappelez la catégorie de ’exemple A.2.)
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Soit X une surface de Riemann et f : X — C une fonction holomorphe. On peut penser a
f comme étant une collection de fonctions holomorphes f, := f o o' : 0, (U,) — C sur des
ouverts du plan complexe, ou ¢, : U, — C sont des cartes d'un atlas de X. Ces fonctions sont
compatibles dans le sens suivant : si ¢, : U, = C et @3 : Ug — C sont des cartes, alors

f5(2) = fa(pa 0 95" (2))
pour tout z € pz(U, N Ug). Puisque f est une fonction holomorphe, on attendrait a ce que sa

dérivée f’ le soit aussi. Cependant, la fonction f’ ne satisfait pas la condition de compatibilité
que l'on vient d’écrire. En fait, le théoreme de dérivation des fonctions composées montre que

f5(2) = falpa © 05" (2))(¢a 0 95") (2)-
Un probleme similaire se produit lors de la tentative d’intégration d’une fonction méro-
morphe. La définition naturelle de [, f, ot 7 est un chemin dans X, serait

Lf = /%m fa(z) dz.

Cette définition a plusieurs problemes. Méme si le chemin ~ est suffisamment petit pour qu’il
soit dans U,, la valeur de I'intégrale dépend du choix de la carte ¢,, ce qui n’est certainement
pas souhaitable.
Pour résoudre tous ces problemes, on va utiliser un nouvel objet dans X : les formes diffé-

rentielles.

Définition 1.15 — 1-formes différentielles. Une I-forme holomorphe w sur X est une collec-

tion d’expressions f, dz, pour chaque carte ¢, : U, — C de X, ou f, sont des fonctions

holomorphes sur ¢, (U,), qui obéissent aux conditions de compatibilité

f3(2) = fa(a 05" (2))(@a 0 05") (2)

pour tout pair de cartes ¢, : Uy = C, @5 : Usg = C et z € p3(U, N Ups). De méme, si les f,
sont des fonctions méromorphes, on dit que w est une 1-forme méromorphe.

Il existe deux méthodes de base pour créer des 1-formes holomorphes. L'une consiste a
commencer par une fonction holomorphe h et a former sa différentielle dh qui, pour chaque
carte p, : U, — C de X, est donné par la formule

(dh)g := (ho ') dzq = K., dz,.

Une autre facon est de commencer avec une 1-forme holomorphe existante w et de la multiplier
par une fonction holomorphe A pour donner une nouvelle 1-forme holomorphe qui, pour chaque
carte p, : U, — C de X, est donné par la formule

(hw)q := (ho @ ") fodze = R, fa dza.

Bien entendu, ces constructions permettent également de construire des 1-formes méromorphes.
Les 1-formes holomorphes et les 1-formes méromorphes forment des C-espaces vectoriels, notés,
respectivement, par (X) et MQ(X).

Il sera généralement utile d’affaiblir les définitions et d’envisager les 1-formes qui ne sont
que C*. Dans ce cas, au lieu d’écrire les fonctions en termes de parties réelle et imaginaire de
z, on écrira les fonctions en termes de z et de Z, ce qui est toujours possible.
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Définition 1.16 Une I-forme C* w sur X est une collection d’expressions f, dz, + go dZa
pour chaque carte ¢, : U, — C de X, ou f, et g, sont des fonctions C* sur ¢, (U,), qui
obéissent aux conditions de compatibilité

f3(2,2) = falpa 0 05" (2), 0a 0 05" (2))(@a © ©5') (2)
et

95(2,2) = galwa 0 95" (2), 00 © 5" (2))(9a 0 95") (2)
pour tout pair de cartes ¢, : Uy, = C, g : Ug — C et z € p3(U, N Us).

Puisque cette définition implique que les parties dz et dZ d’une 1-forme C'*° se transforment
indépendamment, si w est de la forme f, dz, pour une carte p,, alors w a cette forme pour
tous les cartes. Dans ce cas, on dira que w est de type (1,0). De méme, une 1-forme C'* de la
forme g, dz, est dite de type (0, 1). Il est clair que toute 1-forme holomorphe est de type (1,0).

On note par £V (X) le C-espace vectoriel constitué par les 1-formes C*°, par €19 (X) le C-
espace vectoriel constitué par les 1-formes de type (1,0) et, de méme, par €@V (X) le C-espace
vectoriel constitué par les 1-formes de type (0,1). Bien siir, EM(X) = £10(X) @ £OV(X).

La principale motivation pour définir les objets que I'on étudie dans cette section est la
volonté de généraliser les intégrales de ligne aux surfaces de Riemann. Par exemple, on peut voir
les conditions de compatibilité qui apparaissent dans les définitions des 1-formes différentielles
en tant que manifestation du théoreme de changement de variable dans les intégrales de ligne.
Pour étudier les intégrales de surface, on a besoin d’une notion de « produit » de 1-formes a
satisfaisant la condition de compatibilité

fa(Z,f) = fa(SOaOSOEl(Z)a OSO,B H OSOB )H2

Heureusement, ce produit n’est rien d’autre que le produit extérieur !

Définition 1.17 — 2-formes différentielles. Une 2-forme C* n sur X est un élément de
N EWD(X). De maniére équivalente, une 2-forme C* 7 sur X est une collection d’expres-
sions f, dz, A dZ, pour chaque carte ¢, : U, — C de X, ou f, sont des fonctions C* sur
©va(Us), qui obéissent aux conditions de compatibilité

fa(2,2) = falPa 0 05" (2), 00 0 05 (2) H a0 5") >HQ

pour tout pair de cartes ¢, : Uy, — C, pg : Usg — C et z € p3(U, N Up). De méme, si les
fonctions f, sont holomorphes / méromorphes, on dira que 7 est une 2-forme holomorphe /
méromorphe.

Désormais on omettra systématiquement l'indice o dans la notation d’une forme différen-
tielle a la condition qu’il n’y ait aucune possibilité de confusion. Par exemple, on notera une
2-forme tout simplement par n = f dz A dz.

Tout comme on a définit la différentielle d’une fonction holomorphe, on peut généraliser
cette construction et définir la dérivée extérieure d’une forme différentielle.
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Définition 1.18 — Dérivée extérieure. Le dérivée extérieure d est l'opérateur linéaire qui
associe a une fonction C* f la 1-forme

_of g, 0

df:— aZ Z+£d§,

a une l-forme C*° w = f dz + g dz la 2-forme

(99 0of _
dw.-(az aZ)dz/\dz

et a une 2-forme 7 la valeur dn := 0.

D’apres le théoréeme de Schwarz, il est clair que pour tout fonction f, d(df) = 0. Ce fait est
généralement dénoté par 1’équation d? = 0.

Le lecteur attentif a peut-étre vu que ’équation définissant dw ressemble aux équations de
Cauchy-Riemann. En fait, la dérivée extérieure d’une 1-forme holomorphe est toujours zéro :

0
w= fdz avec f holomorphe — dw = —afdz Adz = 0.
Z
Les 1-formes dont la dérivée extérieure est nulle sont si spéciales qu’elles méritent un nom.
Définition 1.19 — 1-formes exactes et fermées. Soit w une 1-forme C*. On dit que w est

fermée si dw = 0 et que w est exacte s’il existe une fonction C f telle que w = df.

Bien siir, comme d? = 0, toute forme exacte est fermée. Aussi, de la discussion précédente,
on conclut qu’une forme de type (1,0) est fermée si et seulement si elle est holomorphe.

Finalement, il existe un moyen canonique d’envoyer des formes différentielles d'une surface
de Riemann a l'autre : le tiré-en-arriére. (« Pullback » en anglais.)

Définition 1.20 — Tiré-en-arriére d’une fonction. Soit F' : X — Y une application holomorphe
non-constante entre des surfaces de Riemann. Si A : Y — C est une fonction C* sur Y, la
fonction F*h :=ho F': X — C est appelé le tiré-en-arriére de h par F.

Pour définir le tiré-en-arriere des formes différentielles, on fixe une carte ¢, : U, — U/, dans
X telle que F'(U,) soit contenu dans le domaine Vj d'une carte ¢ : V3 — V5 en Y. On note
h:=1g0 F o @' Décriture locale de F' dans ces cartes.

Définition 1.21 — Tiré-en-arriére des formes différentielles. Soit w une 1-forme C*° sur Y
définie localement par wg = fz dzg + gg dzg. Alors, la 1-forme C* sur X définie localement
par

(F*w)e = (F*f)a b dwy + (F*g)o I dww,

est appelé le tiré-en-arriére de w par F. De méme, si 1) est une 2-forme C'*° définie localement
par ng = fg dz A dz, la 2-forme C* sur X définie localement par

(F™)a == (F"fa [M[| dw A dw

est appelé le tiré-en-arriere de n par F.
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Le tiré-en-arriere commute avec la dérivée extérieure. C’est-a-dire que si f est une fonction
C® et w est une 1-forme C'*°, on a

FrAf) = d(F*f) et F*(dw) = d(F'w).

Il est également clair que le tiré-en-arriere préserve les classifications des 1-formes : si w est
holomorphe, alors F*w l'est aussi. Il en va de méme pour les 1-formes méromorphes et de type
(1,0) ou (0,1).

1.8 INTEGRATION DANS LES SURFACES DE RIEMANN

A cet état, on sait déja tout ce qu’il faut pour étudier les intégrales sur les surfaces de
Riemann.
Définition 1.22 — Intégrale de chemin. Soit 7 : [0,1] — X un chemin differentiable dans
une surface de Riemann X et w = f dz + g dZ une 1-forme C*° sur X. Si I'image de ~ est
contenue dans le domaine d'une seule carte ¢, : U, — U/, on définit I'intégrale de w sur ~

par
/w ;:/ fodz + go dz.
v Y Pa

Si 'image de 7 n’est pas contenue dans aucune carte, on partitionne [0,1] = [0,a;] U --- U
lan, 1] de sorte que les restrictions 7|, q,,,] aient des images suffisamment petites. L’intégrale
d'une 1-forme méromorphe est définie d'une maniere analogue, il faut juste que le chemin ~
n’intersecte pas les pdles de f.

Les conditions de compatibilité des 1-formes sont exactement ce dont on avait besoin pour
que l'intégrale ne dépende pas des cartes choisies. Le lecteur peut également vérifier que 1'inté-
grale est indépendante de la partition de [0, 1] choisie.

Plus généralement, on peut envisager des combinaisons linéaires formelles de chemins avec
des coefficients entiers. C’est-a-dire des objets du type

Y= Z Ci%i>
i=1

ou ¢; € Z et ~y; sont des chemins. On dit alors que v est une 1-chaine. L’intégrale d’une 1-chaine

est définie par linéarité
n
[w=0a[w
8l i=1 i

Les 1-chaines forment un groupe abélien que 'on dénote par C4.

On aimerait également définir les intégrales de surface dans un fermé D de X. Tout comme
il fallait partitionner [0, 1] dans la définition de I'intégrale de chemin pour assurer que chaque
partie du chemin est contenue dans le domaine d’une seule carte, il faudra partitionner D. Il
y a deux fagons habituelles de procéder : on peut utiliser les partitions de 'unité par rapport
a la couverture ouverte donnée par les cartes ou 'on peut trianguler D. La premiere approche
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est plus habituelle dans le contexte des variétés abstraites mais pour notre portée, la seconde
approche est plus appropriée.

Définition 1.23 — Intégrale de surface. Soit D un fermé triangulable d’une surface de Rie-
mann X et n = f dz A dZ une 2-forme C*°. Si D est contenu dans le domaine d’une seule
carte @, : U, — Ul, on définit 'intégrale de n sur D par

[n=[  fodzndze=-2i[ fulotiye—iy)dedy,
D «(D) «(D)

ol la derni¢re intégrale est une intégrale de surface dans R? = C. Si D n’est pas contenu
dans le domaine d’aucune carte, on triangule D pour que chaque triangle soit suffisamment
petit.

Notez que, puisque dz A dz = (dz +idy) A (dz —idy) = (—2i) do A dy, dans la définition de
I'intégrale, on a fait rien d’autre que « effacer les symboles A ».

Tout comme on a fait avec les chemins, on peut envisager des combinaisons linéaires formelles
de fermés triangulables avec des coefficients entiers. C’est-a-dire des objets du type

D = Z CiDi,
=1

ou ¢; € Z et D; sont des fermés triangulables. On dit alors que D est une 2-chaine. L’intégrale
d’une 2-chaine est définie par linéarité

/Dn::iz:lci/Din.

Les 2-chaines forment un groupe abélien que ’on dénote par Cs. Par complétude, on définit les
0-chaines comme étant des combinaisons linéaires formelles de points de X. Le groupe abélien
formé par les O-chaines est noté Cj.

Maintenant, si T est un triangle dans X complétement contenu dans le domaine d’une
carte, on peut construire un chemin 07 en traversant la frontiere de 7' dans le sens anti-
horaire, paramétrée par la longueur de I'arc. Cela donne un chemin fermé 07T sur X. Si D est
un fermé triangulable dans X, on peut décomposer D en triangles {7} }i—1,. , et définir

oD = Z oT;,

=1

qui est une 1-chaine sur X, appelée la frontiére de D. De méme, on définit la frontiere d’une
2-chalne par linéarité.

Par souci d’exhaustivité, la frontiere d’un chemin v est définie comme étant (1) —~(0). On
définit la frontiere d’une 1-chaine en étendant par linéarité. Aussi, on définit la frontiere d’une
0-chaine comme étant la valeur 0.

On peut dorénavant écrire la version de surface de Riemann du théoreme de Stokes, une
vaste généralisation du théoréme fondamental du calcul.
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Théoréme 1.27 — Théoréme de Stokes. Soit D une 2-chaine dans une surface de Riemann
X et w une 1-forme C* sur X. Alors,

/ w = / dw.

aD D

Démonstration. Par linéarité, il suffit de supposer que D est un triangle inclus dans le do-

maine d’une carte. Dans ce cas, le théoreme devient simplement le théoreme de Green dans
R2. m

Tout comme dans le plan complexe, une intégrale ne change pas lorsque l'on choisit des
chemins homotopes.

Proposition 1.28 Soient 7y et y; des chemins homotopes sur une surface de Riemann X.
Alors, si w est une 1-forme C* fermée (c’est-a-dire que dw = 0), alors

fo=flo
70 71

Démonstration. Soit F': [ x I — X D'application associé a I’homotopie reliant v, et ;. Alors,
si D est I'image de F', D est triangulable et 9D = ~; — 7. Le théoreme de Stokes implique

donc que
/w—/w:/ w:/dwzo
71 Yo oD D

puisque w est fermée. O

Comme tout 1-forme holomorphe est fermée, la proposition précédente s’applique toujours
dans le cadre des 1-formes holomorphes.

1.9 HOMOLOGIE ET COHOMOLOGIE

A la base, la topologie algébrique est divisée en deux études principales : ’homologie et
I’homotopie. La section 1.5 était une introduction a I'objet homologique le plus simple (et, sans
doute, le plus important) de tous : le groupe fondamental. On va maintenant nous concentrer
sur I'autre coté de la topologie algébrique.

Lorsque I'on définit la frontiere d’une chaine, il y a 3 opérateurs dénotés généralement de
la méme maniere :

Cy, 2 0 %y 0.

On va les différencier momentanément :

o ) o
Cy =2 C) — Cy = 0.

Une observation importante est que la frontiere de la frontiere est toujours zéro. C’est-a-dire
que 01 0 0y = Jy o 01 = 0. Cela implique notamment que im 0, n’est pas simplement un sous-
groupe de (', mais également un sous-groupe de ker 0;. Cela motive la définition du groupe
d’homologie.
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Définition 1.24 — Homologie. Soit X une surface de Riemann. On définit le groupe d’homo-
logie de X comme étant le groupe abélien

. ker 81
N im 82 .

H(X):

Les éléments du noyau ker 0; s’appellent des cycles et les éléments de 'image im 0, s’appellent
des bords.

A priori, le groupe d’homologie peut sembler un peu effrayant. On verra cependant qu’il
s’agit d’un objet bien connu!

Théoreme 1.29 Soit X une surface de Riemann. Alors on a un isomorphisme de groupes

7T1(X)
[ (X), m(X)]

Hy(X) =

Croquis de démonstration. L’idée principale de la démonstration de ce théoreme est de
fixer un point zo € X et de voir les lacets dans (X, zy) comme des cycles dans ker d;. On
obtient ainsi un homéomorphisme h : (X, z9) — H;(X). Ce morphisme est surjectif et a
pour noyau le sous-groupe dérivé de m; (X, zg). Le résultat découle alors du premier théoreme
d’isomorphisme. O

Ce théoreme nous permet d’afficher facilement quelques exemples de groupe d’homologie.

» Exemple 1.17 — Sphére a n trous. Soit X = C \ {p1,...,pn} la sphere de Riemann perforée
a n trous. Dans I'exemple 1.13 on a calculé

(X)) ={g1,- s Gn | g1 gn = e).

L’abélianisé de m(X) est donc tout simplement le groupe abélien engendré par les cycles
fi,- -+, fano1. Il n’est pas nécessaire de mettre f,, car la somme de tous les f; est une bord et est
donc égale a I'élément neutre de Hy(X). n

m Exemple 1.18 — Surface de genre g. En fait, on a déja calculé le groupe d’homologie d’une
surface de Riemann compacte X de genre g dans I'exemple 1.15! On a

H\(X)=17%.
Le groupe H;(X) est engendré par les cycles ay, by, ..., a,,b, qui sont les images de arétes de
F, par I'application quotient. On dit que ces cycles sont la base canonique de cycles. n

Considérons une 1-forme C'*° fermée w. L’intégration de w nous donne un homomorphisme
du groupe de cycles a C

ker 81 — C

0 r—>/w.
g
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Par le théoreme de Stokes,

/ w=20
aD

pour tout bord 0D € imd,. La propriété universelle des quotients implique donc que cet
homéomorphisme induit un homéomorphisme

/7w:H1(X)—>(C

que l'on appellera I’homomorphisme de période de w. On peut considérer que son domaine est
soit le groupe d’homologie, soit le groupe fondamental, selon les besoins.
La motivation de ce nom est le fait que si a1, b1, ..., a,,0b, est la base canonique de cycles,

les valeurs
Ai ::/ W, B’L 3:/ w
a; b’L

sont appelées périodes de w. Clairement, I'intégrale de w dans tout chemin fermé peut étre écrite
en termes des périodes. Le fait étonnant est que les intégrales de surface peuvent également
étre exprimées en termes de périodes !

Théoreme 1.30 — Relations bilineaires de Riemann. Soit X une surface de Riemann compacte
de genre g avec base canonique de cycles aq, by, ..., a,,b,. Soient aussi w,w’ deux 1-formes

C® avec périodes A;, B;, A, B.. Alors

g
X

=1

Le lecteur intéressé peut trouver une démonstration de ce résultat dans [3].

L’opérateur de frontiere 0 et la dérivée extérieure sont similaires a bien des égards : les deux
agissent sur 3 espaces différents de telle sorte que l'application successive de ces opérateurs
donne toujours la valeur zéro. Autrement dit, d? et 9* sont égaux a l'opérateur nul. On va
maintenant faire une construction analogue a I’homologie en utilisant le dérivée extérieure.
Comme précédemment, il sera utile de distinguer les trois dérivées extérieures :

EO(X) 2o g (x) 4 £@(x) L4 0,

oit £M(X) est le C-espace vectoriel constitué par les k-formes C* avec la convention qu'une
0-forme C° est simplement une fonction C*°. Notez que 'ordre des fleches est inversé par
rapport au cas d’homologie, ce qui motive le préfixe « co- » dans la définition suivante.

Définition 1.25 — Cohomologie. Soit X une surface de Riemann. On définit la cohomologie
de X comme étant le C-espace vectoriel

HY(X) = kerd;  {1-formes fermées}

imdy  {1-formes exactes} "

Bien siir, comme tout 1-forme exacte est fermée, cet espace est bien défini. En général, une
forme fermée n’a pas besoin d’étre exacte. La cohomologie mesure exactement combien ’espace
des formes fermées est plus grand par rapport a l’espace des formes exactes.
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En fait, il existe plusieurs notions équivalentes de cohomologie sur une surface de
Riemann. Celle que l'on vient de définir s’appelle la cohomologie de De Rham. Comme
la plupart des autres théories de la cohomologie ne produisent que des groupes, il est de
coutume de dire que H'(X) est le groupe de cohomologie de X méme s’il a beaucoup
plus de structure.

De méme que 'homologie est étroitement liée au groupe fondamental, la cohomologie I’est
également.

Théoréme 1.31 Soit X une surface de Riemann. Alors on a un isomorphisme d’espaces vec-
toriels
H'(X) = Homgp(m (X),C).

Croquis de démonstration. Soit 7, € X. Etant donné une classe de cohomologie [w] €
H'(X), on définit ’homomorphisme

7T1(X,[L'0) —C
] Héw,

ou 7 est un chemin differentiable dans la classe d’homologie [y]. L’application linéaire ¢ :
H'(X) = Homgp (1 (X), C) ainsi définie est un isomorphisme. O

Le calcul explicite des groupes de cohomologie est généralement tres difficile. L’objet qui
nous aide a les calculer est la suite de Mayer-Vietoris, qui dépasse notre cadre. Heureusement,
le théoreme ci-dessus est suffisant pour calculer les groupes de cohomologie de certains espaces.

m Exemple 1.19 — Sphére de Riemann. Soit X = C la sphere de Riemann. Puisque C est sim-

~

plement connexe, son groupe fondamental est trivial et donc Homg,,(71(C), C) I'est également.

On en déduit que H'(C) est espace vectoriel trivial et donc dans C toute 1-forme fermée est
exacte. L]

m Exemple 1.20 — Surface de genre g. Soit X une surface de Riemann compacte de genre g.
Comme C est un groupe abélien, [m1(X), 7 (X)] est dans le noyau de tout homomorphisme
m1(X) — C. La propriété universelle du quotient implique donc que

Homgp(m1(X), C) = Homegp(H:1(X),C).

Comme H;(X) est isomorphe (comme groupe) a Z9, il suit que H'(X) = C%. .

Pour conclure ce chapitre, on verra une variante simple de la notion de cohomologie. Soit
P = {p1,...,pn} un sous-ensemble fini de X. On définit E® (X, P) comme étant le sous-
espace vectoriel de £#(X) donné par les k-formes qui s’annulent sur P. Ces sous-espaces sont
compatibles avec la dérivée extérieure en ce sens que la dérivée extérieure d’un élément de
EW (X, P) est un élément de £F+1) (X, P). Cela nous permet de définir une cohomologie basée
sur la suite

£0(x, P) 25 (X, P) -1 £@ (X, P) 2 0.

o1 . ’ P
Pour faciliter la notation, on notera momentanément dy|gw)(x py par di .
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Définition 1.26 — Cohomologie relative. Soit X une surface de Riemann et P un sous-
ensemble fini de X. On définit la cohomologie relative de X modulo P comme étant le
C-espace vectoriel

HY(X, P) = kerd{  {1-formes fermées qui s’annulent sur P}

imdy  {l-formes exactes qui s’annulent sur P}’

Une propriété fondamentale de la cohomologie relative est le fait que si X est une surface
de Riemann compacte de genre g, alors H' (X, {p1,...,p,}) est naturellement isomorphe &
C29t7=1 comme indique la proposition suivante.

Proposition 1.32 Soit X une surface de Riemann compacte de genre g et {p1,...,p,} C X.

Alors 'application
[w] — <A1,B1,...,Ag,Bg,/ w,...,/ w),
Y2 n

ou A; et B; sont des périodes de w et ; sont des chemins reliant p; a p;, est un isomorphisme
d’espaces vectoriels entre H'(X, {pi,...,pn}) et C29Tn=L

Bien que la cohomologie relative soit un objet tres courant dans la topologie algébrique,
les ouvrages qui étudient la théorie de De Rham ne citent généralement pas la cohomologie
relative. Le livre [11] est une belle exception.
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2
THEORIE DE TEICHMULLER

2.1 L’ESPACE DE MODULES DES TORES

La théorie de Teichmiiller est, de maniere générale, I'étude des collections de surfaces de
Riemann. Etant donné un genre ¢, on aimerait paramétrer les différentes structures complexes
pouvant étre placées sur une surface topologique de genre g. Comme indiqué dans le chapitre
précédent, I’espace de modules de surfaces de genre g, My, est 'ensemble de toutes les classes
d’équivalence biholomorphe de surfaces de genre g. Dans cette section, on étudie I’exemple type
qui nous guidera dans les cas les plus généraux : 'espace de modules des tores.

On se demande quand est-ce que deux tores C/A et C/A’ sont biholomorphes. Notons tout
d’abord que chaque tore complexe est biholomorphe au tore complexe X, défini par le réseau
engendré par 1 et 7, ou 7 est un nombre complexe avec partie imaginaire positive. En effet, si
A est engendré par w; et wo, alors z — z/w; est un biholomorphisme qui envoie A sur le réseau
engendré par 1 et wy/w;. Si ce rapport est dans le demi-plan supérieur H, il s’agit de 7; sinon,
on peut prendre 7 = —ws/wy. On obtient ainsi un premier résultat :

Proposition 2.1 Tout tore complexe C/A est biholomorphe & un tore complexe de la forme
X, =C/(Z®TZ), ou T € H.

Bien que la proposition 2.1 simplifie notre étude, elle ne nous donne pas une maniere de
dire systématiquement quand C/A et C/A’ sont biholomorphes. Pour cela, on a besoin d'un
résultat plus fort.

Théoréme 2.2 Soient C/A et C/A’ deux tores complexes. Alors il sont biholomorphes si et
seulement s’il existe un nombre complexe non-nul v tel que A" = yA.

Démonstration. Supposons qu'’il existe un biholomorphisme f : C/A — C/A’. En composant
avec une translation appropriée sur C/A’, on peut supposer que f([0]) = [0]'. Par la formule
de Riemann-Hurwitz, f n’est par ramifié et est donc un revétement au sens topologique. On
en déduit que la composition for : C - C/A — C/A', ou m : C — C/A est 'application
quotient, l'est aussi. Par la propriété universelle du revétement universel (théoreme 1.25), il
existe un revétement g : C — C tel que le diagramme
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commute. Comme toutes les autres applications du diagramme sont holomorphes, g 1’est aussi.
De plus, puisque f([0]) = [0]', 7" 0 g(0) = [0]" et donc g(0) est un point du réseau. On peut en
fait supposer que ¢g(0) = 0 car la composition avec translation par un point du réseau n’affecte
pas 'application quotient.

Par commutativité du diagramme, g envoie des points d’'un réseau a l'autre. D’ou g(z +
l) — g(z) est toujours on point de A’, disons w(z,¥), pour tout z € C et £ € A. Mais A est
un ensemble discret et C est connexe; par conséquent, pour ¢ fixe, w(z, () est indépendant de
z. On en déduit que ¢'(z + ¢) = ¢'(z) et donc toutes les valeurs de ¢’ apparaissent dans le
parallélogramme fondamental de A. Comme un tel parallélogramme est compacte, ¢’ est une
fonction entiere bornée. Le théoréme de Liouville implique qu'’il existe v € C tel que g(z) = vz
pour tout z € C. Il suit que yA = A",

Inversement, si yA = A’, alors [z] — [yz] est bien défini et est le biholomorphisme voulu. [

Maintenant on pose la question suivante : quand est-ce que X, et X, sont biholomorphes ?
Pour cela, il faut et il suffit que I'on ait un nombre complexe v tel que Y(Z & 72) = Z & 7'Z.
Dans ce cas, il doit y avoir des entiers a, b, ¢, d tels que v = ¢+d7’ et y7 = a+ b7’. En éliminant
7 de ces équations, on obtient que 7 = (a+b7")/(c+d7’). De plus, pour que 7 et y7 engendrent
7 & 7'7, le déterminant ad — be doit étre égal a +1. En fait, il doit étre égal a 1, car 7 et 7’ se
trouvent dans le demi-plan supérieur H. Ces conditions sont également clairement suffisantes.

En d’autres termes, le groupe SLy(Z) des matrices 2 x 2 & coefficients entiers et déterminante
unitaire agit sur le demi-plan supérieur H de sorte que deux tores X, et X’ sont biholomorphes
si et seulement si 7 et 7/ sont sur la méme orbite. On obtient ainsi le résultat voulu.

Théoréme 2.3 L’espace de modules des tores M est identifié au quotient H/ SLy(Z).

En fait, Pespace quotient H/ SLy(Z) est une surface de Riemann biholomorphe a C par le
g-invariant de Felix Klein, I'un des objets les plus intéressants de toutes les mathématiques.
Pour plus d’informations, voir [16], chapitre 6.

On peut également comprendre cette classification du point de vue du groupe fondamental.
Soient X, et X, deux tores complexes et T' un tore topologique (c’est-a-dire un tore complexe
sans son atlas). Prenons zy = [0] comme point de base du groupe fondamental 7 (7', zo) (qui
est a la fois le groupe fondamental de X, et de X,/). Les segments compris entre 0 et 1 et entre
0 et 7 dans C, respectivement, déterminent les lacets A, et B, dans X..

Les lacets A, et B, engendrent le groupe fondamental 71 (7T, ). Alors, Z @ 7Z est isomorphe
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a m1 (T, zo) sous '’homomorphisme de groupe

1— A
T B..

De méme, Z @ 7'Z est identifié a w1 (T, zo) sous 'homomorphisme de groupe 1 — A, 7 +— B,.
Alors, une application biholomorphe f : X,» — X, induit un automorphisme f, : w1 (T, x¢) —
w1 (T, zp) tel que

LA = [f(A)] et ful[Br]) = [f(B~)].

Cet automorphisme correspond au isomorphisme f : Z @& 7'Z — 7 & 77 entre réseaux. On peut
considérer ainsi que la différence entre X, et X, correspond précisément a la différence entre
les générateurs canoniques de m (X, zg) et de m (X, zg). Cela motive la définition suivante.

Définition 2.1 — Tore marqué. Soit 7" un tore topologique. Un tore marqué est une paire
(X, %(p)), ou X est une surface de Riemann dont la surface topologique sous-jacente est
T et X(p) = {[A],[B]} est un systéme de générateurs du groupe fondamental (7, p), qui
s’appelle une marquage.

Pour paramétrer ’ensemble des tores marqués, on a besoin d’'une notion d’équivalence dans
les tores marqués et, par conséquent, dans les marquages.

D’abord, deux marquages X(p) = {[4], [B]} et 2(p') = {[A], [B']} sont équivalents lorsqu’il
existe un chemin h de p’ jusqu’a p tel que I'isomorphisme

Py :m(T,p) = m(T,p')
[fl = [h-f-h

vérifie P, ([A]) = [A] et Py([B]) = [B’]. Ensuite, deux tores marqués (X, X(p)) et (Y, 3(p)), ou
Y(p) = {[A], [B]} et X(p') = {[A],[B']}, sont équivalents lorsqu’il existe un biholomorphisme
f:Y — X tel que fu(X(p) := {f([4]), f«([B])} soit équivalent a 3(p) = {[4],[B]}. On
dénote par [ X, X(p)] la classe d’équivalence de (X, 3(p)).

Définition 2.2 On définit 'espace de Teichmiiller T, comme étant ’ensemble des classes

d’équivalence des tores marqués.

Le prochain théoreme est la classification que 1’on voudrait pour les tores marqués a 1’équi-
valence pres.

Théoréme 2.4 Pour chaque point 7 € H, soit ¥, = {[A,],[B;]} la marquage sur X, pour
laquelle A, et B, correspondent a 1 et 7, respectivement. Alors [ X, .| = [X,/, ¥] dans Ty
si et seulement si 7 = 7.

Puisque chaque tore marqué est équivalent a [X,, ¥,] pour un certain 7 € H, ce théoreme
montre que 77 est identifié de facon naturelle a H.

Il y a encore une autre fagon d’étudier les tores marqués. Si X et Y sont des surfaces
de Riemann, on dit qu'un difféfomorphisme f : X — Y, vu comme une application entre
des variétés réelles, préserve l’orientation si son déterminant Jacobien est partout positif. Les
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équations de Cauchy-Riemann impliquent immédiatement que tout biholomorphisme préserve
I’orientation.

Soit S un tore® et ¥ = {[A], [B]} une marquage sur S. Toute paire (X, f) composée d’un
tore complexe X et d’un difféfomorphisme f : S — X qui préserve 'orientation détermine
une marquage f.(X) = {f.([A]), f«([B])} sur X. Il découle naturellement de cette définition la
question de savoir dans quelles conditions sur les difféomorphismes les tores avec ces marquages
sont équivalents.

Proposition 2.5 Soient X, Y deux tores complexeset f: S — X, g: 5 — Y deux difféomor-
phismes qui préservent 'orientation. Alors [ X, f.(X)] = [Y, g.(X)] dans 77 si et seulement si
go f~! est homotope & un biholomorphisme.

Démonstration. Supposons d’abord que [X, f.(2)] = [Y, g«(2)]. Soient (S, et (X, %;)
des tores complexes marqués représentant [S, 3] et [ X, fu(2)] = [V, g.(X)], respectivement. On
voit alors f et g comme des difféomorphismes S+ — X,. Comme on a vu dans la preuve du
théoreme 2.2, par la propriété universelle du revétement universel (théoreme 1.25), il existe des
revétements f,§: C — C tels que les diagrammes

i i

C—— X, C— X,
Fi Tf 3 %
C——5 C——5

commutent. On peut supposer que_ f et g envoient respectivement 0, 1 et 7/ a4 0, 1 et 7. On
obtient donc une homotopie entre f et § en faisant

Fy=(1—1t)f +1tg, pour ¢ € [0, 1].

Alors Fy([z]) := [F,(2)] définit une homotopie entre f et g. On conclut que go f~* est homotope
a l'identité.

Inversement, supposons que go f~1 : X — Y soit homotope a un biholomorphisme o : X —
Y. Dans ce cas, il y a une homotopie F; entre co f : S =+ Y et g : S — Y. Soit p le point
de base de X et soit h : I — Y le chemin F(p) entre o o f(p) et g(p). Alors I'isomorphisme
P :m(Y,9(p)) = m(Y,0 0 f(p)) implique que les marquages (o o f).(X) et g.(X) sur Y sont
équivalentes, d’ou [ X, f.(X)] = [V, g.(2)]. O

Comme l'on a vu, pour chaque difféomorphisme préservant l'orientation f : S — X, il y
a une marquage canoniquement attachée f,(X) sur X. Inversement, pour chaque tore marqué
(X, 3(p)), il existe un difféomorphisme préservant l'orientation f : S — X tel que [X, X(p)] =

6. Maintenant il ne suffit pas d’avoir un tore topologique parce que l'on veut étudier des difféomorphismes.
Dans ce cas, S a une structure de variété mais pas nécessairement une structure de surface de Riemann.
Autrement dit, les fonctions de transition ne doivent pas nécessairement étre holomorphes.
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[X, f«(2)]. En fait, si (S, X.) et (X, ;) sont des tores complexes marqués représentant [S, 3]
et [X, X(p)], respectivement, alors 'application

(r—1z—(r—1)z

[Z] = T — P
est un difféomorphisme S — X préservant 'orientation. En raison de cette correspondance, on
dit également qu'un difféomorphisme f : S — X préservant 'orientation est une marquage et
que (X, f) est un tore marqué.

En vue de la proposition 2.5, on dit que deux paires (X, f) et (Y, g) sont équivalentes si
go f~1 est homotope & un biholomorphisme.

Définition 2.3 — Espace de Teichmiiller. Soit S un tore. On définit I’espace de Teichmailler de
S comme étant 'ensemble des classes d’équivalence des tores marqués (X, f),ou f: S — X
est un difféfomorphisme préservant I'orientation. On dénote ce espace par T (S).

Comme avant, on dénote par [X, f] la classe d’équivalence de (X, f). Clairement, 77 et T ()
ne sont que des fagons différentes de voir le méme objet.

Enfin et surtout, comme le groupe SLy(Z) agit sur H, il agit également de maniere naturelle
sur 77 en faisant A - (X;,3;) := (X4, X4.,) pour A € SLy(Z), ou 'action sur H est donnée

par
a b a+br
ST = )
c d c+dr

D’autre part, le groupe SLy(Z) est isomorphe au groupe Mod(.S) de toutes les classes d’homoto-

pie [h] de difféomorphismes h : S — S préservant l'orientation. En utilisant cet isomorphisme,
on définit une action de SLy(Z) = Mod(S) dans T (S) par

[h] - [X, f]=[X, foh™l].

Ces actions ont la merveilleuse propriété de « oublier la marquage », dans le sens ou

~ T T(S)
M= SLy(Z) ~ Mod(S)’

Puisque l'espace de Teichmiiller est généralement plus simple que 1'espace de modules (par
exemple, I'espace de Teichmiiller est toujours une variété, alors que 1’espace de modules ne 1'est
pas toujours), notre approche dans les sections suivantes consiste a étudier un certain espace
de Teichmiiller puis quocienter par un groupe approprié pour obtenir I’espace de modules.

~Y

2.2 L’ESPACE DE TEICHMULLER DES SURFACES COMPACTES

En fait, on a déja fait tout le travail difficile. Les définitions qui ont fonctionné dans I’exemple
type des tores fonctionnent toujours pour des surfaces compactes de genres arbitraires. Ainsi,
cette section est beaucoup plus expositive que déductive. Comme auparavant, on va construire
I’espace de Teichmiiller de deux manieres. Commencons en considérant les systemes de généra-
teurs du groupe fondamental.
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Définition 2.4 — Surface marquée. Soit R une surface topologique de genre g. Une surface
de Riemann marquée est une paire (X,3(p)), ou X est une surface de Riemann dont la
surface topologique sous-jacente est R et X(p) = {[A1], [Bi],...,[4], [B,]} est un systeme
de générateurs du groupe fondamental 7 (R, p), qui s’appelle une marquage.

Comme précédemment, on a besoin d’une notion d’équivalence de surfaces marquées et
donc de marquages. D’abord, deux marquages X(p) = {[Ai],[Bi],...,[A], [Byl} et X(p) =
{[AL], [Bi], - -, [A}], [B]} sont équivalents lorsqu’il existe un chemin h de p" jusqu’a p tel que
I’isomorphisme

Ph . 71-1(R7p) — 7T1(R>p/)

[f] = [ f- R
vérifie Py ([A;]) = [A}] et Pu([Bi]) = [Bl] pour tout i € {1,...,¢}. Ensuite, deux surfaces de
Riemann marquées (X, X(p)) et (Y, 3(p")) sont équivalents lorsqu’il existe un biholomorphisme

[ Y = X tel que fu(5(p)) = {f.([A1]), f([Bi]); - -, fo([AQ]), Su([Bgl)} soit équivalent a
X(p) =A{[A1], [B1],--.,[Ay],[By]}. On dénote par [ X, X(p)] la classe d’équivalence de (X, X(p)).

Définition 2.5 — Espace de Teichmiiller. On définit I'espace de Teichmiiller T, comme étant
I’ensemble des classes d’équivalence des surfaces de Riemann de genre g marquées.

La seconde approche est donnée en considérant des difféomorphismes préservant 1’orienta-
tion. Soit S une surface différentielle de genre g. On considere les paires (X, f), ou X est une
surface de Riemann de genre g et f : S — X est un difféomorphisme qui préserve l'orientation.
Comme avant, on dit également qu’un difféfomorphisme f : S — X préservant 1'orientation est
une marquage et que (X, f) est une surface de Riemann marquée. Deux paires (X, f) et (Y, g)
sont équivalents si g o f~1 est homotope a un biholomorphisme. On note par [X, f] la classe

d’équivalence de (X, f).

Définition 2.6 — Espace de Teichmiiller. Soit S une surface différentielle de genre g. On
définit 'espace de Teichmiiller de S comme étant I'ensemble des classes d’équivalence des
surfaces de Riemann marquées (X, f), ou f : S — X est un difféomorphisme préservant
'orientation. On dénote ce espace par T (.5).

Comme dans le cas des tores, les deux espaces de Teichmiiller 7, et 7 (), pour une surface S
de genre g, sont naturellement identifiés. En d’autres termes, I'application [ X, f] — [ X, f.(2)],
ou X = {[A1],[B1],...,[Ay], [B,]} est une marquage fixée de S, est bien définie et bijective. La
démonstration de ce fait n’est pas aussi simple dans le cas général que dans le contexte des
tores et sera donc omise. Le lecteur intéressé peut le consulter sur [15].

Enfin, espace de Teichmiiller 7 (S) est doté d’une action canonique. Considérons le groupe
Mod(S), appelé en anglais « Mapping Class Group », constitué de tous les difféomorphismes
préservant l'orientation modulo homotopie. Un élément [h] € Mod(S) agit sur T(S) par [h] -
(X, f1=[X,foh™].

Puisque deux éléments de T(S) sont dans la méme orbite de Mod(S) exactement quand
leurs marquages sont équivalentes, deux éléments de 'espace des orbites T (.S)/ Mod(S) sont
égaux si et seulement si les surfaces de Riemann sont biholomorphes. En d’autres termes, on
obtient I'espace de modules M.
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Les deux espaces T(S) et M, peuvent naturellement étre vus comme ouverts de C*~3,
pour g > 1. De plus, 7(5) a une structure de variété complexe de dimension 3g — 3. D’autre
part, M, n’est pas une variété car il présente des singularités.

2.3 DIFFERENTIELLES ABELIENNES ET STRATIFICATION

Dorénavant on étudiera une variante de I’espace des modules des surfaces compactes. Au lieu
de considérer les paires (X, f), ou f est un difféomorphisme préservant Iorientation, considérons
les paires (X,w), o w est une 1-forme holomorphe non-nulle (dans ce contexte il est habituel
d’appeler les 1-formes holomorphes par différentielles abéliennes).”

On note L, 'ensemble des paires (X, w) ot X désigne une surface de Riemann de genre g et w
est une 1-forme holomorphe non-nulle sur X. Si S est une surface de genre g, le groupe Mod(.S)
agit sur £, de fagon naturelle. Un élément [h] € Mod(S) agit sur une surface de Riemann X de
la fagon suivante : si {¢, | @ € A} est atlas maximal sur X, on définit [h]- X comme la surface
de Riemann qui a la méme surface topologique sous-jacente mais {ho g, | @ € A} comme atlas.
Enfin, 'action de Mod(S) sur £, est donnée par

0] - (X,w) = ([A] - X, h*w).

On définit ainsi 'espace de modules des différentielles abéliennes.

Définition 2.7 — Espace de modules des différentielles abéliennes. L’espace de modules des
différentielles abéliennes est 'espace des orbites £,/ Mod(S). On le dénote par H,.

Etant donné une différentielle abélienne w sur une surface de Riemann X, la formule de
Riemann-Hurwitz (théoreme 1.21) implique que la somme des ordres des zéros de w vaut 2g — 2.
En écrivant ces valeurs par ordre décroissant, on obtient une liste K = (ky,...,k,) des ordres
des zéros de w.

Alors pour chaque liste K = (K1, ..., Kk,) telle que k1 + ... + K, = 29 — 2, on définit L(k)
comme étant le sous-ensemble de £, consistant en toutes les différentielles abéliennes dont la
liste des ordres de ses zéros coincide avec k.

On peut montrer que si h est un difféfomorphisme préservant I'orientation, alors h*w et w
ont les mémes ordres des zéros. Cela nous permet de passer au quotient.

Définition 2.8 — Strate. Soit K = (k1,...,Kk,) une liste telle que k1 + ... + K, = 29 — 2.
On dénote I'espace des orbites L£(k)/ Mod(S) par H(x). On dit que les sous-ensembles H (k)
sont des strates de I’espace de modules des différentielles abéliennes.

Par définition,

Hg: H H(lil,...,lin).

K1+...+Kkn=29—2

Cette nomenclature est donnée par le fait que les H(x) partitionnent 1’espace de modules des
différentielles abéliennes de sorte que chaque H (k) ait une dimension différente.

7. Comme toute différentielle abélienne est définie sur une surface de Riemann, on omettra X de la paire s’il
n’y a pas de risque d’interprétation erronée.
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2.4 SURFACES DE TRANSLATION

Il existe un point de vue alternative a I’espace £, qui facilite grandement la compréhension.
Etant donné une pair (X,w), ot X est une surface de Riemann de genre g et w est une diffé-
rentielle abélienne non-nulle sur X, soit P I’ensemble de zéros de w. On verra que w détermine
de fagon canonique un atlas sur la surface perforée X \ P.

Etant donné un point p € X \ P, soit U, un voisinage connexe par arcs de p. Alors 'appli-
cation ¢, : U, — C, p,(z) := [ w, obtenue en intégrant w sur un chemin allant de p jusqu’a
x, est indépendante du chemin choisi. (Proposition 1.28.) De plus, en réduisant le domaine et
le codomaine si nécessaire, cette application est un homéomorphisme et donc une carte centrée
en p.

On conclut que la famille {(U,, ¢,)|p € X\ P} est un atlas sur X'\ P. Cet atlas est important
précisément parce que I'égalité [Fw = [+ [T w, qui vaut pour les chemins suffisamment petits,
implique que les fonctions de transition sont encore plus régulieres qu’une fonction holomorphe ;
elles sont des translations de la forme ¢, 0 ¢, '(2) = 2z + ¢, ot ¢ = [ w est une constante.

En outre, le théoréeme de Riemann sur les singularités apparentes implique que cet atlas
peut étre étendu & X de telle sorte que le tiré-en-arriere de 2* dz par une carte centrée sur un
zéro p d’ordre k (y compris le cas k = 0) soit exactement w.

Une famille maximale de cartes compatibles sur une surface topologique S, dont les fonctions
de transition sont données par les translations du plan complexe, en dehors d’un ensemble fini
de points, est appelée une structure de surface de translation sur S.

En d’autres termes, on a vu que tout différentielle abélienne non-nulle w donne lieu a une
structure de surface de translation telle que w est localement le tiré-en-arriere de la 1-forme
holomorphe canonique dz sur C. En revanche, chaque structure de translation détermine une
surface de Riemann (puisque translations sont toujours holomorphes) et une différentielle abé-
lienne non-nulle w donné par le tiré-en-arriere de dz par les cartes de la structure de translation.
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On obtient ainsi que :

Proposition 2.6 L’ensemble £, est canoniquement identifié a I’ensemble de tous les structures
de surface de translation sur une surface topologique S de genre g.
En fait, il existe un moyen simple d’obtenir un grand nombre de surfaces de translation.

m Exemple 2.1 Considérons une collection vy, ..., v, de vecteurs dans R?> = C. D’abord on
construit une ligne brisée en plagant les vecteurs dans l'ordre, 'un apres 'autre. Ensuite, on
fait une seconde ligne brisée commencant au méme point que précédemment mais en plagant
les vecteurs dans l'ordre v, (1), ..., Vy(n), O 0 € S, est une permutation.

Supposons que ces deux lignes délimitent un polygone. Dans ce cas, en identifiant les vecteurs
égaux par des translations, on obtient une structure de surface de translation sur la surface
quotient. C’est le cas des tores complexes, par exemple. n

2.5 SURFACES A PETITS CARREAUX

Dans cette section, on étudiera un cas particulier de structure de surface de translation
qui est suffisamment général pour étre utile et suffisamment particulier pour étre simple et
compréhensible a plusieurs points de vue. Au lieu d’identifier les cotés paralleles des polygones,
comme dans I'exemple 2.1, on va identifier les cotés paralleles des ensembles de carrés dans le
plan.

Définition 2.9 — Surface a petits carreaux. Une surface a petits carreauz est une surface de
Riemann obtenue & partir d’'une collection finie de carrés unitaires de R? aprés 'identification
des paires de cotés paralleles par translations.

Bien stir, le tore carré C/(Z @ iZ) est une surface a petits carreaux. Un exemple un peu
plus complexe est celui de ’exemple 1.8.

Le fait de définir les surfaces de Riemann & partir de collections finies de carrés nous permet
d’étudier les surfaces a petits carreaux (et méme l'espace de modules de différentielles abé-
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liennes) a I'aide de méthodes combinatoires. On peut énumérer les carrés de 1 a n et dire que
d(i) est le carré a droite de i et que s(i) est le carré supérieur a i. Le fait qu’une surface de
Riemann est toujours connexe équivaut a imposer que d et s doivent agir de maniere transitive
(définition A.18) sur {1,...,n}. On obtient ainsi une définition équivalente.

Définition 2.10 — Surface a petits carreaux. Une surface a petits carreauz est une paire de
permutations (d, s) € S, x S, agissant transitivement sur {1,...,n}.

Comme l'on peut numéroter les carrés de plusieurs facons différentes, deux paires
(d,s) et (d,s") géneérent la méme surface si et seulement s’il existe une permutation
o €8, telle que (d',s') = (odo™ !, 0s071).

La surface de '’exemple 1.8 sera notre exemple type.

s Exemple 2.2 Enumérons les carrés de la surface de Pexemple 1.8 :

Le carré a droite de 1 est lui-méme et le carré au-dessus est 2. C’est-a-dire que d(1) = 1 et
s(1) = 2. Pareillement, d(2) = 3, s(2) =1, d(3) = 2 et s(3) = 3. ]

Tout comme dans I'exemple 1.8, 'angle autour d’un sommet sur une surface a petits carreaux
est généralement un multiple non-trivial de 27. (Cela reflete le fait que l'application quotient
est ramifiée a ces points.) On dit que ces points sont des singularités coniques.

En tant que surfaces de translation, les surfaces a petits carreaux ont une différentielle
abélienne naturellement associé w = dz, qui est définie globalement parce que les fonctions de
transition sont des translations. Le fait que 'application quotient ait une singularité conique
d’angle 27(k + 1) implique que w a un zéro d’ordre k. La proposition 2.6 permet alors de dire
qu’une surface & petits carreaux ayant des singularités coniques d’angles 27 (k1 +1),. .., 27 (K, +
1) est un élément de H(k1, ..., kn).

Enfin et surtout, il existe une derniere définition équivalente de surface a petits carreaux.

Définition 2.11 — Surface a petits carreaux. Une surface a petits carreauz est une paire (X, f),

composée d'une surface de Riemann X et d'un revétement holomorphe f : X — C/(Z&iZ),
ou [0] € C/(Z &iZ) est le seul point de branchement.

Etant donné une paire (X, f) comme dans la définition 2.11, les carrés qui apparaissent dans
la définition 2.9 sont exactement les composants connexes de f~!((0,1) x i(0,1)). De plus, on
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peut utiliser le revétement holomorphe f pour obtenir la différentielle abélienne associée a la
surface de translation X :
f

X —C/(Z&®iZ)

En d’autres mots, (X, f*dz) est une surface de translation obtenue & partir d’une collection
finie de carrés apres l'identification des cotés paralleles par translations.

2.6 LA MESURE DE MASUR-VEECH

L’objectif de cette section est d’étudier une mesure naturelle sur ’espace de modules de
différentielles abéliennes. Notre approche sera analogue a une méthode tres concrete qui peut
étre utilisée pour calculer des aires sur une hypersurface : soit A C S? un sous-ensemble de la
sphére unité de R3.

En supposant que 1'on sache calculer la mesure de Lebesgue p de R3, on peut considérer
I’ensemble
A.={treR¥|zec A tec(l—¢l1+e)}

Dans ce cas, la mesure superficielle de A, ps(A), est simplement donnée par®

po(A) = (A

e=0

Notre plan pour définir la mesure de Masur-Veech sera analogue : on commencera par définir
une mesure naturelle dans lespace H (k). Comme dans le cas de R?, cet espace a une mesure
infinie. On définit ensuite une hypersurface analogue a la spheére unité S? C R3, qui aura une
mesure superficielle héritée de la mesure définie sur H(k).

Tout d’abord, I'isomorphisme donné par la proposition 1.32

i ([ s f o f ] )

8. Dans ce cas, on peut le prouver en utilisant le principe de Cavalieri et le théoréme de Fubini. Dans le cas
général, ce résultat s’appelle théoréme de désintégration de Rokhlin.
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nous permet d’utiliser la mesure de Lebesgue sur C29t"~! pour définir une mesure dans I'espace
HY(X,{p1,...,pn}) en tant que mesure image.

En fait, cet isomorphisme n’étant pas canonique (on aurait pu choisir une autre base d’ho-
mologie et d’autres chemins reliant p; aux p;), cette mesure n’est définie qu’a normalisation pres.
Pour cette raison, on définit le sous-groupe H' (X, {p1,...,p. };Z ®iZ) C H (X, {p1,...,pn})
défini par

{[w] € HY(X,{p1,...,pn}) ‘ /w € 7 @ i7Z pour tout chemin v soit fermé soit reliant les pi} .
¥

Ce sous-groupe est discret et alors on déclare la mesure du domaine fondamental de

Hl(X) {pl) oo 7pn})
HY X, {p1,....,on}; Z®iZ)

comme étant égale a 1. On note la mesure ainsi obtenue par piy.
Pour définir une mesure sur H(k), on veux définir des « cartes » qui envoient un voisinage
de [X,w] € H(K1, ..., ky) vers un ouvert de H'(X,{p1,...,pn}).? Le choix naturel est

(X, w] = [w].

A priori, il peut sembler que cette application ne soit pas bien définie au-dela d’un seul point
dans H (K1, ..., ky) car les points proches de [X,wp] n’ont pas nécessairement les mémes zéros
de wy. Cependant, il y a toujours un représentant de [X,w| qui a les mémes zéros que wy. '°
Comme les fonctions de transition entre ces cartes préservent la mesure de Lebesgue (ce
sont des éléments de SL,,(C), ou m = 2g +n — 1), la mesure py induit localement une mesure
wsur H(ky, ..., Kk,) en tant que mesure image de puy par la réciproque de ces cartes.
Malheureusement, la mesure de H (k) est toujours infinie, ce qui ne nous permet pas de
prendre des informations a partir des valeurs de p(?H(x)). On définit donc une hypersurface

Hi(r) = {[X,w] € H(r) [ S(X,w]) = 1},

ou S : H(k) — R est la fonction homogene (de degré 2) ' définie par

S([X,w]) = 3/ wAW.
2Jx
De maniére analogue au cas de la sphére unité dans R?, on peut utiliser la mesure p,
définie sur H(k), pour définir une mesure p; sur H;(x). La construction de cette mesure en
détail impliquerait d’entrer dans trop de détails techniques sur le théoreme de désintégration de
Rokhlin, ce qui est hors de notre portée. On appelle 1 la mesure de Masur-Veech, en référence
a Howard Masur et William Veech, qui ont prouvé dans [20, 31] le résultat suivant.

9. Lors de la composition avec I'isomorphisme canonique de H* (X, {p1,...,pn}), ces applications deviennent
des vraies cartes.
10. En d’autres termes, il existe toujours un difféomorphisme [h] € Mod(S) tel que h*w et wy aient les mémes
7€r0s.

11. Cest-a-dire que S([X,tw]) = [t]2S([X,w]).
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Théoréeme 2.7 — (Masur - Veech). Les volumes des strates #H;(x) par rapport a la mesure
41 sont finis.

La suite de notre étude sera consacrée a 1’étude des valeurs i (#Hi(x)). On appelle désormais
ces valeurs volumes de Teichmdiller. Dans le chapitre suivant, on verra une méthode géométrique
qui nous permettra de calculer ces valeurs pour x petit. Cette méthode, bien que capable de
calculer certaines valeurs numériques, ne répond pas a plusieurs doutes théoriques. Pour cela,
on utilisera au chapitre 5 une technique basée sur la théorie des représentations du groupe
symétrique.
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L’APPROCHE GEOMETRIQUE AUX VOLUMES
DE TEICHMULLER

3.1 LA METHODE

Dans ce chapitre, on étudiera une méthode développée par Anton Zorich, dans son article
« Square Tiled Surfaces and Teichmiiller Volumes of the Moduli Spaces of Abelian Differentials »
[34], qui permet de calculer les volumes de Teichmiiller u1(H;(k)) pour des petites valeurs de
k. L'idée principale remonte a Gauss et consiste a approximer la mesure d’un sous-ensemble de
R™ par le nombre de points entiers qu’il contient.

En d’autres termes, pour calculer le volume dun sous-ensemble A C R™, on peut faire une
homothétie de rapport r et compter sur le nombre de points entiers m(r) contenus dans rA.
Ce nombre est asymptotiquement égal a Vol(rA) = Vol(A)r™. Comme la mesure superficielle
de ce sous-ensemble est

dVol(rA)

T = nVol(A),

r=1
pour calculer la mesure superficielle de A, il suffit de connaitre le coefficient dans le terme
principal du développement asymptotique du nombre de points entiers dans rA.

Le contexte des volumes de Teichmiiller est analogue : puisque H' (X, {p1,...,pn}) est iso-
morphe a C297"~! on utilise le réseau (Z@iZ)*9+"~! C C**"~! comme 'ensemble des « points
entiers ». Autrement dit, nos « points entiers » sont les éléments [X,w] de H(kq, ..., K,) dont
I'image par 'isomorphisme H'(X, {p1,...,p,}) — C¥* "1 est un élément de (Z @ iZ)>9+" 1L

Dans ce cas, on veut compter le nombre m(r) de différentielles abéliennes « entieres » w
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telles que S([X,w]) < r, ou
S:H(k) — R

7
(X, w] — 5 /X wAw
est la fonction que l'on a utilisée pour définir 'hypersurface H; (k). La seule différence avec le
cas précédent est que S est une fonction homogene de degré 2. Alors, pour calculer la mesure
de H; (k) par dérivation du volume, il faut utiliser un facteur supplémentaire de 2. C’est-a-dire
que
pr(Hi(Ky, .o k0)) =229 +n — 1)c,

oll ¢ est telle que m(r) ~ c- 2971 lorsque r tend vers l'infini.

En fait, ces différentielles abéliennes « entieres » sont des objets déja bien connus du lecteur.
Etant donné une telle différentielle w] € HY(X,{p1,...,pn}), on peut définir un revétement
holomorphe f,, : X — C/(Z & iZ) en faisant

14
P (/ w) mod Z & iZ.
p1

Cet application a exactement n points de ramification : py,...,p,. On conclut que son unique
point de branchement est [0] € C/(Z @ iZ) et donc w définit une surface & petits carreaux au
sens de la définition 2.11. En revanche, étant donné une surface a petits carreaux (X,w) au
sens de la définition 2.9, on peut également vérifier que w est une différentielle « entiere ».

En résumant notre discussion, on a obtenu le théoreme suivant.

Théoréme 3.1 Soit m(r) le nombre de surfaces a petits carreaux avec des singularités coniques
d’angles 2w (ky + 1), ..., 27(k, + 1) que peuvent étre construites avec au plus r carrés. Alors,

pr(Ha(k, - -5 kn)) =229 +n — 1),

ol ¢ est telle que m(r) ~ ¢ - 72971 lorsque r tend vers l'infini.

Ce théoreme est la base de notre méthode pour calculer certains volumes de Teichmdiller :
on calcule le nombre de surfaces a petits carreaux d’un type topologique donné et puis on prend
le terme principal du développement asymptotique.

3.2 CALCUL DU VOLUME DE H;(0)

Pour illustrer 'approche que 'on vient de décrire, on va calculer le volume de Teichmiiller
le plus simple : uq(#H(0)), celui de la strate des tores. Dans ce cas, on n’a pas de singularité
conique et donc il suffit de compter le nombre de facons de paver un tore topologique avec au
plus r carrés de telle sorte que les tores complexes résultants ne soient pas isomorphes.

Disons que I'on a pavé un tore avec un nombre arbitraire de carrés, comme dans l'image
suivante.
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En coupant le tore le long d’'une ligne verticale, on obtient un cylindre avec v - h carrés, ou
v est la quantité de carrés verticalement et h est le nombre de carrés horizontalement.

Du point de vue du groupe fondamental a 1’espace de Teichmiiller 77, on voit qu’en tournant
ce cylindre et en le rétractant, on obtient un tore non-isomorphe a l'original. Cette procédure
s’appelle un twist de Dehn dans la littérature. 2

Il en résulte que, en fixant v et h, il y a v pavages non-difféomorphes. Ainsi, le nombre de
tores carrés construits en utilisant au plus r carrés est d’environ

oo |r/h] © 1 2 2 r2 2

v = v = v~ - = — —_ = —.

P DR P e E I D S Ll
vh<r v<r/h

En fait, certains des tores présents dans la premiere somme sont isomorphes et sont donc
comptés deux fois, voire plusieurs fois. Néanmoins, puisque cette correction n’affecte pas le
terme principal, on va la négliger.

On obtient ainsi notre premier volume :

12. Son importance réside dans le fait que les twists de Dehn générent le groupe Mod(.S).
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Théoréme 3.2 Le volume de Teichmiiller de #(0) est

7T2

p(Ha(0)) = -

3.3 CALCUL DU VOLUME DE H;(2)

La méme méthode peut étre utilisée pour calculer le volume de Teichmiiller de H(2). Ce-
pendant, dans ce cas, on a besoin de faire une analyse un peu plus sophistiquée. On va diviser
les surfaces a petits carreaux en deux types pour les compter séparément.

Les surfaces a petits carreaux appartenant a la strate H;(2) ont une seule singularité conique
d’angle 67. Etant donné une telle surface, on considere les cotés horizontaux (avec 'orientation
héritée du plan) qui sont adjacents a cette singularité dans 1’ensemble des carrés qui constituent
cette surface. Dans le cas ci-dessous, tous les sommets sont équivalents et donc on a 3 lacets
formées par les cotés horizontaux non-équivalents situés entre les sommets.

\ \
? ?

I

I

I

I

|

|

|

|
\, \
? ?.

L’union de la singularité conique avec ces boucles forme un graphe orienté fini I'. De plus,
comme ce graphe est dessiné sur une surface orientée, il porte une ordre cyclique, a savoir 1'ordre
horaire dans lequel les arétes sont attachés au sommet. L’orientation des arétes alterne lorsque
I’on suit 'ordre horaire.
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On définit ensuite une surface orientée a bord S(I') en remplacant chaque aréte de I' par
un rectangle topologique orienté.

L’orientation des arétes de I donne lieu a une orientation de la frontiere de S(I"). Ainsi,
les composantes connexes de la fronticre de S(I') sont décomposés en deux classes : orientée
positivement et négativement ; positivement lorsque cette orientation est dans le sens horaire
en relation a la surface et négativement quand elle n’est pas. (Une autre fagon de voir cela
consiste a vérifier si la surface est a gauche ou a droite du vecteur tangent dans la direction de
I'orientation.)

En nommant notre surface a petits carreaux X, on a que X \ S(I') est alors une union de
cylindres, dont chacune des deux bases est identifiée a des composants connexes de la frontiere
de S(I"), 'une orientée positivement et I’autre négativement. On dit que la base qui est identifiée
a la composante connectée orientée positivement est celle du haut et I'autre est celle du bas.

On obtient ainsi un diagramme séparatrice.

Définition 3.1 — Diagramme séparatrice. Un diagramme séparatrice est un graphe orienté
fini I avec un ordre cyclique des arétes a chaque sommet et une décomposition de I’ensemble
des composantes connexes de la frontiere de S(I') en paires tels que :

1. L’orientation des arétes est alternée par rapport a l’ordre cyclique ;

2. Dans chaque paire il y a exactement une composante connexe positivement orientée et
une négativement orientée.

A partir du processus décrit ci-dessus, on peut associer un diagramme séparatrice a chaque
surface a petits carreaux. Inversement, a partir de chaque diagramme séparatrice, on obtient une
surface orientable fermée en collant les cylindres topologiques entre les paires de composantes
connexes.

Combinatoirement, il existe trois diagrammes séparatrice possibles avec un sommet et trois
boucles.

t
—t
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Cependant, le premier diagramme n’est pas réalisable par une surface a petits carreaux parce
que sa frontiere a 1 composante connexe positivement orientée et 3 composantes négativement
orientées.

CAD

On attribue a chaque boucle un nombre réel représentant sa longueur. Aussi, les composante
connexes de la frontiere sont également dotées d’'une longueur obtenue en faisant la somme des
longueurs de toutes les boucles appartenant a cette composante. Dans le cas d'un diagramme
séparatrice d'une surface a petits carreaux, les longueurs des boucles sont héritées de leurs
longueurs dans le plan complexe. En particulier, ce sont toujours des entiers.

Considérons les surfaces a petits carreaux qui ont pour diagramme séparatrice D,. Ce dia-
gramme définit une surface avec une frontiere a deux composantes connexes et est réalisable
pour toutes les valeurs positives des parametres de longueur. Les deux composantes connexes
de la frontiere forment un cylindre dont le périmetre de la base est £1 + f5 + {3, ou £y, {5 et {3
sont les longueurs des boucles de Dy. On dénote par h la hauteur de ce cylindre.

Comme dans le cas des tores, en fixant h, {1, {5, 3, on peut faire un twist de Dehn et obtenir
01 + {5 + 03 surfaces non-isomorphes. Ainsi, le nombre de surfaces de ce type en utilisant au
plus r carrés est asymptotiquement égal a

1
3 > (01 + by + 03),

£y 42,03,heN
(L14+L2+L3)h<r

ou on a un facteur de 1/3 pour compenser le fait qu’une permutation cyclique de ¢1, (5, {3 géneére
la méme surface.

Le nombre de facons d’écrire un entier v = 1 4+ 5 + {3 sous la forme d’'une somme de 3
entiers est asymptotiquement égal a v?/2.13 D’on,

1 T
3 > (€1+€2+€3~§ZU—ZU 72221
01,02,63,heN v,heN v,heN h 1 v=1

(b14£2+L3)h<r vh<r v<r/h
1 S rt &1 rt ot

— 4 ht T 244~ Kt 24 90

13. Parce que le choix de ¢y € {1,...,v —2} et de f5 € {1,...,v — {1 — 1} déterminent 3 = v — {1 — (5.

(@
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CALCUL DU VOLUME DE H4(2)

Considérons maintenant les surfaces a petits carreaux qui ont pour diagramme séparatrice
Ds. Ce diagramme définit une surface avec une frontiere a deux composantes connexes positive-
ment orientées et deux composantes connexes négativement orientées. On dénote par ¢y, (5, {3
les longueurs des boucles de Ds.

Pour que ce diagramme vienne d’une surface a petits carreaux, il est nécessaire que les
périmetres des deux bases des cylindres soient égaux. Cela implique que /1 = /3. Dans ce cas,
le périmetre de la base de I'un des cylindres est /1 et celui de 'autre est £1 + f5. Soit hy et ho les
hauteurs de ces cylindres. Ainsi, comme on peut faire des twists de Dehn sur les deux cylindres,
le nombre de surfaces de ce type en utilisant au plus r carrés est asymptotiquement égal a

2
> (b + b)) = > 07+ lyls.
£1,82,h1,h2EN £1,€2,h1,h2 €N
L1hy+(01+L2)ho<r £1(h1+ho)+Llaha<r
On va approximer les sommes relatives a ¢; et ¢, par des intégrales. Soit x; := /¢y - @ et

Ty = lqy - % On integre sur le simplexe
A=A{x, 50 e R| a1+ 22 <1, 21,29 > 0},

Notre somme devient alors

>3 LG (hffhg) ()] Grimat) (é;d@)

= [/ {L’l dl‘ldﬂfg Z Z h2 h1—|—h2 +/ 19 dZEldCL’Q Z Z % h1+h2)
|\

h1=1 ha=1 hi=1 ho=
1/12 1/24

Les séries de la forme

3

=y mi(n+ m)
sont connues dans la littérature sous le nom de fonctions multi-zéta et leurs propriétés sont
toujours a I'étude. Heureusement, les valeurs ¢(1,3) = 71/360 et ((2,2) = 7*/120 sont bien
connues.

En ajoutant la contribution des deux diagrammes et en appliquant le théoreme 3.1, on

obtient finalement :

t
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L’APPROCHE GEOMETRIQUE AUX VOLUMES DE
TEICHMULLER

Théoréme 3.3 Le volume de Teichmiiller de #(2) est

4

m(H(2)) = 55

3.4 AUTRES RESULTATS

Des calculs similaires a ceux que 1’on vient de faire permettent également de calculer d’autres
volumes de Teichmiiller p;(H;(k)) pour x petit. En particulier, il est possible de montrer que

1 16
1,1)) = 7" et 3,1)) = —nS.
L’ensemble des résultats obtenus jusqu’a présent nous conduit a conjecturer le résultat
suivant.

Conjecture Les volumes de Teichmiiller sont toujours des multiples rationnels de 729. En
d’autres termes,

,UI(HI(H:M ) h:n))ﬂ-_zg € Q7
ou Ky + -+ kK, =29 —2.

La suite de notre étude sera consacrée a la démonstration de ce résultat. On étudiera la
théorie des représentations d'un groupe fini (en particulier le cas du groupe symétrique), qui
aboutira a une nouvelle approche des volumes de Teichmiiller, permettant de démontrer cette
conjecture.
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REPRESENTATIONS LINEAIRES DES
GROUPES FINIS

4.1 DEFINITIONS DE BASE ET EXEMPLES

Soit E un espace vectoriel a dimension finie sur un corps k. On va maintenant nous consacrer
a I’étude des actions d'un groupe fini G sur E. On note que le contexte ici est quelque peu
différent de ce qui a été étudié dans la section sur les actions de groupe : auparavant, la catégorie
étudiée était Set, maintenant ce sera k-Vect. Dans ce cadre, il est usuel de noter Auty.vect(F)
par GL(E).

Définition 4.1 Une représentation d’un groupe fini G sur un espace vectoriel F est une action
p: G — GL(E).

On appelle dim E' le degré de la représentation. Comme avant, on va dénoter p(g)(v) par
g-v,ougeGetvelkL.

1l est habituel dans la littérature de noter une représentation uniquement par l’espace
vectoriel E. C’est un fort abus de notation, mais il est déja tellement consacré qu’il
est nécessaire de le connaitre.

Tout ce qui a été étudié dans la section A.7 était dans le cadre C = Set. La premiere chose
a faire est donc de nous demander comment tout change lorsque nous changeons de catégorie.
En fait, la seule chose qui change est la définition A.21, qui doit maintenant coder I'information
qu’un isomorphisme dans k-Vect a plus de structure qu'un isomorphisme dans Set.

Définition 4.2 Etant donné un groupe G, deux représentations p:G— GL(E)et p: G —
GL(E") sont isomorphes s'il existe un isomorphisme d’espaces vectoriels f : E — E’ tel que
le diagramme

commute pour tout g € G. C'est-a-dire, telle que f o p(g) = p'(g) o f pour tout g € G.
On appellera les applications linéaires f (pas nécessairement bijectives) qui satisfont cette
propriété équivariantes.

Notez que bien que le théoreme A.15 n’ait aucun sens dans k-Vect, la formule des classes
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(corollaire A.16) est toujours valide car chaque action de k-Vect est une action de Set.

m Exemple 4.1 — Représentation triviale. Si dim £ = 1, on peut identifier GL(E) avec k%, le
groupe multiplicatif des unités de k. Puisque chaque élément de G a ordre fini, les valeurs de
p(g), vues comme des éléments de k>, sont des racines de I'unité. Si l'on fait

plg) =1
pour tout g € GG, on obtient une représentation de G appelée représentation triviale. "
» Exemple 4.2 — Représentation réguliere. Etant donné un groupe G = {91,92----,9n} €t un
corps k, on définit 'espace vectoriel k[G] de dimension n = |G| dont une base {e,,, €4, ..., €4, }

est indexé par les éléments de G. Alors, G agit sur k[G] en faisant

p: G — GL(K[Q))
g1 plgr),

ol p(g1) est Pendomorphisme défini sur les éléments de la base par ey, — €4, 4,. Puisque G est
fini, p(g1) est toujours un automorphisme de k[G]. En effet, la structure de groupe nous permet
de définir une structure d’algebre dans k[G], donnée par ey e,4, — e4,4,. On dira quil s’agit de
I’algebre de groupe de G. "

s Exemple 4.3 — Représentation de permutation. Etant donné un corps k, un ensemble fini
A = {aj,as....,a,} et une action o : G x A — A, on définit I'espace vectoriel k[A] de
dimension n = |A| dont une base {e,,, €q,. ..., €4, } est indexé par les éléments de A. Alors, G
agit sur k[A] en faisant

p: G — GL(k[A])
g p(9)-
olt p(g) est 'endomorphisme défini sur les éléments de la base par e, — €4(g). Bien entendu,

il s’agit d’une généralisation de la représentation réguliere. Avec la base donnée, la matrice
représentant p(g)

1 siz=g-y

[(9)]zy = {

Ainsi, il y a exactement un 1 dans chaque ligne et colonne, et 0 partout ailleurs. n

0 sinon

Un corollaire direct des considérations que 1’on a fait dans I’exemple 4.3 est le suivant.

Proposition 4.1 Soit k[A] la représentation de permutation associée a un ensemble fini A et
a une action o : G x A — A. Alors,

trp(g) = [A% =[{ae Alg-a=a}|

Démonstration. Considérons la matrice de p(g) sur la base habituelle. Sa trace est égal au
nombre d’éléments non nuls de la diagonale principale, qui est le nombre d’éléments fixés par
I’action de g. O]

Ut
(@)



SOUS-REPRESENTATIONS

4.2 SOUS-REPRESENTATIONS

Soit p : G — GL(F) une représentation and soit F' un sous-espace de E. Si g-v € F pour
tout v € F et g € G, on dit que F est stable sous 'action de G.

Définition 4.3 — Sous-représentation. Une sous-représentation de p : G — GL(E) est la
représentation obtenue par restriction des p(g) a un sous-espace vectoriel F' de E stable sous
I'action de G. On dénote cette représentation par pr : G — GL(F).

m Exemple 4.4 On considere la représentation réguliere d’un groupe G. Soit F' le sous-espace
de k[G] engendré par 1’élément,
wi=> e,

geG

Comme g - w = w, la restriction de la représentation réguliere a F' est une sous-représentation
de k[G] isomorphe a la représentation triviale. .

Définition 4.4 — Somme directe. Etant donné une famille finie {py : G — GL(E))}rea de
représentations d’un groupe G, on définit leur somme directe par

P pxr: G — GL(E)

PN
g > pa9),
AEA

ou E = @,y Ey. Clairement, chacun des py est une sous-représentation de @ycp pa.

Théoréme 4.2 — Maschke. Soit p : G — GL(F) une représentation et soit F' un sous-espace
vectoriel de E qui est stable sous 'action de G. On suppose que |G| est inversible en k. Alors,
il existe un supplémentaire F'* de F' dans E qui est stable sous I’action de G.

L’étude des représentations sur un corps fini dont la caractéristique divise |G| (théorie des
représentations modulaires) est beaucoup plus difficile précisément a cause de 'absence de
ce théoreme. Donnons deux preuves : la premiere, plus élégante, justifie notre notation et la
deuxieéme est plus générale.

Démonstration du cas k =R, C. Soit (-, -) un produit scalaire quelconque sur E. On définit
un nouveau produit scalaire

(Z,9)a = (9-2,9v),

geG

qui satisfait (g-x, g-y)e = (x,y)c pour tout z,y € E et g € G. Alors, le complément orthogonal
de F' par ce produit scalaire

F+={ve E|(v,r)qg =0 pour tout x € F}

est un supplémentaire de F' qui est stable sous l'action de G. O

t
\]
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Démonstration du cas général. Soit p : E — F la projection de E sur F. On définit un
endomorphisme p : £ — E par

-1
p= p(g)opop(g) .

geG

Comme imp = F et F est stable sous l'action de G, on conclut que imp C F. Siw € F, on a
que

p(w) (g p(g9)H(w) p(g (w) w =
@ S G S o>
d’otu il suit que imp = F. Puisque pop = p, on a que (c’est un exercice classique d’algebre
linéaire)
E=%kerp®imp=kerped F.
Enfin, pour montrer que ker p est stable sous l'action de G, il suffit de montrer que p(g-v) =0
pour tout v € kerp et tout g € G. Alors,

1 _ C1ga—
Bplg-v) =15 2 plh)opop(h)™ o plg)(v) = o> plg~'h)opop(g~th) ™ (v),
| | heG | | heG
qui est égale a p(g) o p(v). Le théoréme suit avec F'+ := ker p. O

Si |G| n'est pas inversible en k, on considére la représentation réquliére k|G| et le
sous-espace I = {3 cq cqeq € k[G]| Xyeqcq = 0}. Le sous-espace F' est stable sous
Uaction de G mais n'a pas de supplémentaire stable.

m Exemple 4.5 En revenant au contexte de 'exemple 4.4 et de la note ci-dessus, si |G| est
inversible dans k, la représentation k[G] peut étre décomposée en

geG geG geq@

k|G] = F & F' = Vect (Z eg) - {Z cqq € kG

chzo}.

Cela implique, dans le langage de la section suivante, que la représentation réguliere n’est jamais
irréductible. "

» Exemple 4.6 Soit p : G — GL(FE) une représentation. On considére le sous-espace E défini
par
“.={veE|g-v=wvpourtout g € G}.

Clairement, E¢ est un sous-espace stable de E. C’est un exemple important d’un sous-espace
stable canoniquement associé a chaque représentation. On va voir bientdt que, si |G| est inver-

sible en k,

dim E¢ = Z trp(g
|G’ gEG
ce qui va nous aider a compter les représentations irréductibles. "

Ut
oo



REPRESENTATIONS IRREDUCTIBLES

4.3 REPRESENTATIONS IRREDUCTIBLES

Définition 4.5 — Représentations irréductibles. Une représentation p : G — GL(F) d'un
groupe G est irréductible si E # {0} et si les uniques sous-espaces de E stables sous 'action
de G sont {0} et E lui-méme.

Théoréme 4.3 Soit G un groupe tel que |G| soit inversible en k. Alors, toute représentation
est somme directe de représentations irréductibles.

Démonstration. Soit p : G — GL(F) une représentation linéaire de G. Si cette représentation
est irréductible, il n’y a rien a démontrer. Sinon, on raisonne par récurrence en utilisant le
théoreme de Maschke (théoreme 4.2). Si dim E = 0, le théoréme est évident. On suppose donc
dim £ > 1. Le théoreme de Maschke implique que E = E; & FE,, ou E;, F» sont stables sous
I'action de GG, dim F; < dim F et dim Fy < dim E. Par récurrence le résultat suit. O]

La propriété décrite par le théoreme 4.3 est généralement appelée « semi-simplicité ». D'une
certaine maniere, elle est analogue a la propriété de nombres entiers d’étre des produits de
nombres premiers.

Le prochain théoréeme est une classification des applications linéaires équivariantes entre
deux représentations irréductibles sur k = C.

Théoréeme 4.4 — Lemme de Schur. Soient p : £ — GL(E) et p/ : E' — GL(E') deux
représentations irréductibles sur & = C et f une application linéaire équivariant entre eux.
Alors,

1. Soit f est un isomorphisme, soit f = 0.

2. Si E=FE"et p=p,alors f = \id pour un certain A € C.

La premiére partie du théoréeme est valable dans n’importe quel corps. La deuzieme
partie vaut dans n'importe quel corps algébriqguement clos.

On commence par prouver un lemme qui nous sera tres utile.

Lemme 4.5 Soient p : E — GL(E) et p/ : B/ — GL(E') deux représentations et f une
application linéaire équivariant entre eux. Alors, ker f et im f sont des sous-espaces stables.

Démonstration. Si v € ker f, alors
flg-v)=g-flv) =0,
d’ott g - v € ker f. Aussi, si v = f(w) € im f,
g-v=g-fw)=flg-w)€imf.

Le résultat suit. O]

Ut
N}
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Maintenant, la preuve du théoreme 4.4 est simple.

Démonstration du Lemme de Schur.

1. Par l'irréductibilité de E, soit ker f = E (c’est-a-dire que f = 0) ou ker f = 0, auquel
cas f est une injection. De méme, l'irréductibilité de E’ implique que im f = 0 (c’est-a-dire que
f=0)ouim f = F’  auquel cas f est une surjection. Ainsi, si f n’est pas identiquement nulle,
il doit s’agir d’un isomorphisme.

2. Soit A une valeur propre de f. C’est-a-dire que f — Aid a un noyau non-nul. On note
aussi que, comme

(f=Aid)(g-v)=flg-v) = Ag-v)=g- f(v) = Ag-v) =g (f(v) = Iv),

I’application linéaire f — Aid est équivariant. Puisque f — \id est équivariant mais n’est pas
un isomorphisme, la premiere partie de la démonstration implique le résultat. O]

Corollaire 4.6 Soit p : G — GL(FE) une représentation irréductible sur C d’un groupe abélien
G. Alors, dim E = 1.

Démonstration. Puisque G est abélien, p(g)op(g’) = p(¢") o p(g). C’est-a-dire que I'endomor-
phisme p(g) est équivariant. D’apres le lemme de Schur, p(g) = A;id pour un certain A, € C.
D’otl on voit que tout sous-espace de E est stable sous I'action de G. L’irréductibilité implique
le résultat. O]

4.4 CONSTRUCTION DE NOUVELLES REPRESENTATIONS

Soient p : G — GL(E) et p' : G — GL(E’) deux représentations d'un groupe G. On a
déja vu que l'on peut définir une nouvelle représentation p @ p : G — GL(E @ E’) en faisant
g-(v+v) :=g-v+g-v. Néanmoins, il y a plus d’opérations que l'on peut faire avec des
espaces vectoriels qu’'une somme directe.

Définition 4.6 On définit le produit tensoriel p®p’ : G — GL(E® E’) de deux représentations
p et p' en faisant

g-(vev)=g-v®g-v.
Bien entendu, le produit tensoriel d’'un nombre fini de représentations est défini exactement
de la méme maniere.

Dans le cadre de la théorie des représentations, il est assez courant de voir A E et Sym™ E
comme des sous-espaces vectoriels de E®™. Pour cela, notons que le groupe symétrique S,, agit
sur E®™ de maniére naturelle :

pour o € S,,, 0 (M ®...QUp) = VUs1) ® ... D Ug(m)-
Alors, il suit que

/\mE ={zre Eem | pour tout o € S,,, 0 -x = sgn(o)x}
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et
Sym™ E = {x € E®" | pour tout 0 € S,,, 0+ x = x}.

Lemme 4.7 Soit p : G — GL(FE) une représentation. On considere la représentation produit
sur %™, Les sous-espaces N E et Sym™ E sont toujours stables sous 'action de G.

Démonstration. Soit x € A" E et g € G. Alors,

o-(g9-x)=g-(0-2)=g-(sgn(o)r) =sgn(o)g - z.

C’est-a-dire que g-x € N E et donc A" E est stable sous 'action de G. Le méme raisonnement
montre que Sym™ E est stable sous I'action de G. m

D’apres ce lemme, on peut définir les puissances extérieures et symétriques d’une représen-
tation.
Définition 4.7 Soit p : G — GL(FE) une représentation d’'un groupe G. On définit ses puis-
sances extérieures et symétriques par les sous-représentations de p®™ : G — GL(E®™)
induites par les sous-espaces stables A" E' et Sym™ F, respectivement. On dénote ces repré-
sentations par A" p: G — GL(A" E) et Sym™ p : G — GL(Sym™ E).

Pour la théorie de représentations, est particulierement important le fait que, si m = 2, on
peut décomposer £%? comme

E@E=/N\EoSm’E.
Cela découle de la décomposition
idge2 = f1+ fo,
ou fi et fy sont définis sur les vecteurs de la base canonique de E®? par

1 1
filei@e)=Slei®ejte;@e),  files@e) = lei®@ej—¢;@e)

et étendus par linéarité.

Définition 4.8 Soient p : G — GL(E) et p' : G — GL(E') deux représentations d'un groupe
G et f € Hom(E, E’). On définit une représentation G — GL(Hom(E, E')) en faisant

(9-Nw):=g-flg7"v)

pour tout v € E. En d’autres termes, en faisant le diagramme

commuter.

La définition de la représentation dual est le cas particulier de la définition ci-dessus lorsque
E'=kep :G— GL(k) est la représentation triviale.
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Définition 4.9 Etant donné une représentation p : G — GL(FE) d’un groupe G, on définit sa
représentation dual p¥ : G — GL(E"Y) par

(g M) = flg™" ),
pour tout v € E

Clairement, cette définition respecte I'isomorphisme canonique entre Hom(E, E') et EYQE'.
C’est-a-dire que
Hom(E,E') = EY @ F'

est non seulement un isomorphisme entre espaces vectoriels, mais aussi un isomorphisme entre
représentations.

Proposition 4.8 L’espace des applications linéaires équivariantes entre deux représentations
E et E est 'espace

Hom(E, E')® = {f € Hom(E, E') | g- f = f pour tout g € G}.

Démonstration. C’est juste une autre fagon d’écrire les définitions. O

4.5 THEORIE DES CARACTERES

Comme motivation, commencons par prouver le résultat de I'exemple 4.6.

Proposition 4.9 Soit p : G — GL(FE) une représentation. On considére le sous-espace E¢
défini par
E¢ ={ve E|g-v=wvpour tout g € G}.

Alors, si |G| est inversible en k,

1
dim B¢ = —

=10 > trp(g).

geG

Démonstration. On considére ’endomorphisme p : E — E défini par

1
p(v) ::@Zg-v.

geG

Par construction, p|ge = idge et imp C EY. On conclut que p est une projection sur E¢.
En sachant que la trace d'une projection est égale a la dimension de son image, ** le résultat

suit. O
14. Par le lemme des noyaux, E = ker(p — id) @ ker p. Soit eq,...,e, une base de E telle que ey, ..., ek est
une base de ker(p — id) est egy1,...,e, est une base de kerp. Alors, p(e;) = e; pour 1 < i < k et p(e;) =0

pour ¢ > k. Il suit que rg p = k. De plus, la matrice de p dans cette base a 1 dans les k premiers éléments de la
diagonale principale et 0 en dehors, d’ou trp = k.
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Pour simplifier les énoncés, dorénavant on va supposer que k est algébriquement clos, ce qui
implique |G| inversible en k.

Définition 4.10 Soit p : G — GL(E) une représentation d'un groupe G. Le caractere de p
est la fonction

Xp:G—k
g = trp(g).

Le caractere d’une représentation irréductible est dénommé un caractere irréductible.
On observe que x,(eq) = dim E et que x,(hgh™) = x,(g) pour tout g,h € G.

Proposition 4.10 Soient p: G — GL(E), p' : G — GL(E") deux représentations d’un groupe
G et g € G. Alors,
L Xpar (9) = Xo(9) + X (9), 4. Xsym2 p(9) = 3(X0(9)* + x,(9%)),
2. Xpzp (9) = Xp(9)X(9), 5. xov(9) = Xo(g7),
3. Xn20(9) = 306(9)” — Xu(9%)); 6. Xttom(z.21(9) = Xo(9™)Xe (9).
Démonstration. Soient {\;} et {u;} 'ensemble des valeurs propres de p(g) et p'(g), respecti-
vement. Alors, {\;}U{p}, {Nipi} et {\; '} sont les ensembles des valeurs propres de (p@p')(g),

(p®p')(g) et p¥(g), respectivement. Les items 1, 2 et 5 suivent. L’item 6 suit de 2 et 5. Pour
Iitem 3, on voit que 'ensemble des valeurs propres de A? p(g) est {\); | i < j} et

AN = 5 {(ZAY—ZA?}

i<j
L’item 4 suit de facon similaire. m

Comme toujours, on suppose que p : G — GL(E) et p' : G — GL(E’) sont deux représen-
tations d’un groupe G. En combinant les deux résultats de cette section, on voit que

dim Hom(E, E')¢ > xo(g X (9),
|G| geG
ce qui nous motive a la définition suivante.

Définition 4.11 Une fonction f : G — k qui est constante dans les classes de conjugaison
G, c’est-a-dire que f(hgh™') = f(g) pour tout g,h € G, est appelée fonction centrale. On
dénote par Ci(G) le k-espace vectoriel de tous les fonctions centrales et on le dote la forme
bilinéaire symétrique (-,-) : Cx(G) x Cr(G) — k définie par

(fi, f2) \G|Zf1 ) faly

geG

Bien stir, toute caractere est une fonction centrale.
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Proposition 4.11 La dimension de Ci(G) est égale au nombre de classes de conjugaison de

G.
Démonstration. Soit C' une classe de conjugaison de G et f € Ci(G) la fonction définie par

Ot
Alors, 'ensemble
{fc € Cx(G) | C est une classe de conjugaison de G'}
est une base de Ci(G). Le résultat suit. O

L’importance du prochain théoréme ne peut étre sous-estimée.

Théoréme 4.12 Soient p : G — GL(E), p' : G — GL(E") deux représentations irréductibles
d'un groupe G. Alors, si p et p’ sont isomorphes, (x,, X,) = 1. Sinon, (x,, x,7) = 0. C’est-a-
dire que les caractéres irréductibles forment un sous-ensemble orthonormal de C(G).

Démonstration. Une autre facon d’énoncer le lemme de Schur est la suivante : si p et p’ ne
sont pas isomorphes, dim Hom(E, E')¥ = 0. Aussi, dim Hom(E, F)¢ = 1.
Comme on a vu,
(Xp, Xp) = dim Hom(E, E)“.

Puisque Hom(E, E')¢ = Hom(E, E)% si p & ¢, le résultat suit. O

Soit f . E — E' un isomorphisme équivariante. Alors, l'application induite h — foh
est un isomorphisme d’espaces vectoriels entre Hom(E, E)¢ et Hom(E, E')¢.

A partir de ce théoréme, on démontre le corollaria qui est la base de toute théorie des
caracteres.

I Corollaire 4.13 Le nombre de représentations irréductibles a isomorphisme pres est toujours
fini.

Démonstration. Ce nombre est inférieur ou égal a dim Ci(G) < oo. O

|Corol|aire 4.14 Une représentation p : G — GL(E) est irréductible si et seulement si
(Xps Xp) = 1.

Démonstration. Soit £ = EY™ @ ... © E2% la décomposition de E en somme directe
de représentations irréductibles donnée par le théoreme de Maschke (théoreme 4.3). Par la
bilinéarité de (-,-) et par le théoréme 4.12,

(Xps Xp) = <ZaiXpm ZaiXm> = Za?,
i=1 i=1 i=1

qui vaut 1 si et seulement s’il n'y a qu'un a; non-nul. O
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Dorénavant, si £ = EY @ ... ® E2% on dénote pg, : G — GL(E;) par p;.

Corollaire 4.15 Soit EY* @ ... ® E2% la décomposition de E en somme directe de repré-
sentations irréductibles. Alors, a; = (x,, X,;) pour tout ¢ € {1,...,m}.

Démonstration. On calcule (x,, X,,) :

(Xps Xpi) = <Z anPj7XPi> = Zaj<ij’XPi> =a

7.
j=1 j=1 O

On preuve qu’'une représentation est déterminée, a isomorphisme pres, par sa caractere.

| Corollaire 4.16 Deux représentations p : G — GL(E) et p' : G — GL(E') telles que x, = x
sont isomorphes.
Démonstration. Soit £ = EY" @ ... ® E2% la décomposition de E en somme directe
de représentations irréductibles donnée par le théoreme de Maschke (théoreme 4.3). Puisque
Xp = Xp'>

aj = <XP>XM> = <Xp’>Xpi> pour tout 7 € {Lam}

On en déduit que a; est le nombre de facteurs de £’ qui sont isomorphes a F;. C’est-a-dire que
E'2E¥o...0 E2 =F. O

Pour obtenir d’autres corollaires importants, considérons dorénavant la représentation ré-
guliere k[G]. D’abord, on calcule la caractere de k[G]. Puisque dim k[G] = |G|, xxgi(ec) = |G].
Par définition, pki)(g) est toujours une matrice de permutation. Donc, si g € G est tel que
pric)(g) a un 1 dans la i-eme position de sa diagonale principale, on a pyc(g)ey, = eg,. Ceci
implique gg; = g; et alors g = eg. On conclut que

G| sig=eq
Xk[G) (9) . :
0 sinon

Soit k[G] = EY" @...® E®% la décomposition de la représentation réguliére en somme directe
de représentations irréductibles. Par le corollaire 4.15,

= (Xk[a]s XE:) |G| > xkia)(g Yxe(g) = |G| |G| xEg,(ec¢) = dim E;,

geG
pour tout i € {1,2,...,m}. Ce résultat nous donne encore trois corollaires importants.

Corollaire 4.17 Soit p : G — GL(FE) une représentation irréductible de G. Si dim E = n,
alors

KG| 2 E*"® EP* @ ... EZ*m.

C’est-a-dire que E apparait dim E fois dans la décomposition de k[G] en somme directe de
représentations irréductibles.
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Démonstration. En vue du théoreme 4.12, on calcule (X,, Xk[q)) :
(Xp» Xr[c]) G Z Xp(9 Xk c1(9) = X,(eq) = dim E.
| | geG
Il suit que E apparait dim F fois dans la décomposition de k[G]. O

A partir de maintenant, si 'on veut trouver les représentations irréductibles d’un groupe G,
le meilleur moyen est de calculer la décomposition de k[G] en somme directe de représentations
irréductibles. Les deux corollaires suivants nous aideront & trouver la décomposition de k[G].

Corollaire 4.18 Soient Fi, ..., E,, les représentations irréductibles d'un groupe G. Alors,
|G| = i(dim E;)?.
i=1
Démonstration. On a |G| = xyg(eq) = X, dim E; x g, (eq) = Sy (dim E;)2. O
Corollaire 4.19 Soient F1, ..., E,, les représentations irréductibles d'un groupe G. Alors, pour

tout élément g # e de G,
> dim E; xg,(g) = 0.

i=1
Démonstration. Si g # eq, 0 = Xk (9) = Xit, dim E; xg,(9)- ]

Pour terminer la théorie des caracteres, il suffit de prouver la continuité du théoreme 4.12 :
les caractéres irréductibles ne forment pas seulement un sous-ensemble orthonormal de Ci(G);
ils forment une base.

Théoréme 4.20 Les caracteres irréductibles x,,, ..., X,, dun groupe G forment une base de
Cx(G). C'est-a-~dire que le nombre de représentations irréductibles (a isomorphisme pres) est
égal au nombre de classes de conjugaison de G.

D’abord on observe que si f € Cx(G) et p: G — GL(E) est une représentation irréductible

de G alors
=" fl9)p(g) € GL(E)

geG

est équivariante. Le lemme de Schur (théoréme 4.4) implique que p = Aid. En prenant la trace,
on voit que

AMimE =Y f(g) = [G] (f:xpv)-

geG

Démonstration. Puisque les caracteres irréductibles sont orthonormaux, il suffit de montrer
qu'ils engendrent Cy(G). Pour cela, on montre que si (f,x,,) = 0 pour tout i € {1,...,m},
alors f =0.1°

15. Soit U le sous-espace de C(G) engendré par les caractéres irréductibles. Cette raisonnement montre que
Ut = {0} et donc Cx(G)=U U+ =U.
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Si p; est une représentation irréductible de G, pY T'est aussi. '® Donc (f, va} = 0 pour tout
i€ {l,...,m}. On en déduit que

- (_lGl 4

Puisque toute représentation est somme directe de représentations irréductibles, on conclut que
p = 0 pour toute représentation p de G. En particulier, pour la représentation réguliere on

calcule p(es) pour obtenir
Z f(g)eqg = 0.

geG

Comme les e, sont linéairement indépendantes, on conclut que f(g) = 0 pour tout g € G. O

4.6 EXEMPLES

La théorie élaborée jusqu’a présent suffit a calculer les représentations irréductibles de plu-
sieurs groupes importants. Dans cette section, on présente quelques exemples de représentations
complexes.

m Exemple 4.7 — Les représentations irréductibles des groupes abéliens. Le corollaire 4.6 est
presque tout ce dont on a besoin pour calculer les représentations des groupes abéliens finis : il
dit que tous ces représentations sont de la forme p : G — C*. Comme tout groupe abélien fini
est une somme directe de groupes cycliques, on calcule d’abord les représentations de Z/nZ.

Chaque élément g € Z/nZ a un ordre fini. Cela implique que p(g) est toujours une racine
n-ieme de I'unité. Définissons p¥([m]) := e*™™™/™ pour tout k € {0,1,...,n — 1}. Puisque
¥ = pF, on vérifie que

j 1 kAT I\~ 1 —2mikm/n 2mwijm/n
Oaoxd) == > xh(mhxi(Im) == 32 erhmingmim/n — 5,
[m]€Z/nZ " imlez/nz
C’est-a-dire que les p¥, ..., p" ! sont les représentations irréductibles de Z/nZ.

Soit alors G un groupe abélien fini. Par le théoréme de structure, on peut écrire

Z Z

G~ 2 oo 2
nlz@ @an’

ou les entiers n; sont des puissances de nombres premiers (pas nécessairement distincts). On
affirme que les représentations irréductibles de G sont pﬁll e pfl: pour k; € {0,1,...,n; — 1}.
Pour faciliter la notation, on prouve le cas r = 2.

16. En effet, il suffit de montrer que si p¥ est irréductible, alors p 'est, et le résultat suivra du fait que
(EV)V = E car E a dimension finie. Soit F' C E un sous-espace stable par p. Alors, F*+ = {¢ € EV,¢(z) = 0
Va € F} est un sous-espace de EV stable par pV, et donc soit FX = EV, ce qui nous entraine & dire que F = 0,
soit F- =0 et donc F = E.
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Soit a;j : Z/miZ & Z/nsZ — C* donnée par ay;(g1 + g2) = pl, (91)pL, (g2). Bien siir, les ay;
sont des homomorphismes. On vérifie que a;; = oy implique @ = k et j = [. En effet,

pil (9) =ai(g+1) =an(g+1) = an (9),

ce qui implique ¢ = k. De méme, k = [. Puisque Z/mZ & Z/nsZ a |Z/mZ & Z/nsZ| = ning
représentations irréductibles, il en découle que les a;; le sont tous.

En utilisant ce résultat, on peut facilement mettre les valeurs des caracteres irréductibles
du groupe de Klein (Z/27 x Z/27), par exemple, dans un tableau :

a1 1 1 1 1
Qa9 1 —1 1 —1
91 1 1 -1 —1
99 1 -1 -1 1

On appelle un tableau comme celle-ci de table de caractéres. Ce tableau contient toutes les
informations sur les représentations irréductibles d’un groupe. n

Les groupes symétriques feront 1'objet de toute une section. Cependant, le calcul des repré-
sentations irréductibles de .S,, pour n petit est une belle application de la théorie que 'on a vue
jusqu’a présent.

m Exemple 4.8 — Les représentations irréductibles de Ss;. Le groupe S3 a 3 classes de conjugaison :
id, (12) et (123). C’est-a-dire qu’il faut trouver 3 représentations irréductibles. La représentation
triviale

p1: Sz — C*, o—1

est toujours irréductible. Comme décrit dans I'exemple 4.5, la représentation de permutation
C[{1,2,3}] (isomorphe & C?) n’est pas irréductible. On peut écrire

(C?):F@F/:VeCt(€1+€2+€3)@{C161+0262+0363e(cg Cl+62+03=0},

ou le premier terme est isomorphe a la représentation triviale et le second est une représentation
irréductible. Soit ps : S3 — F’ cette seconde représentation. Pour calculer le caractére de po,
on pourrait choisir une base pour F’ et écrire les matrices de py sur cette base. Cependant,
une méthode plus simple consiste a utiliser la proposition 4.10 pour calculer ce caractere en
fonction du caractere de la représentations triviale, déja connu, et utiliser la proposition 4.1
pour calculer le caractere de la représentation de permutation :

x2(9) = XC[S3] (9) — x1(9)-

Selon le corollaire 4.18, il reste encore une représentation irréductible de degré 1. Il est facile
de montrer qu’il n’y a que deux homomorphismes S3 — C* : 'homomorphisme constant p; et
la signature. On obtient ainsi notre troisieme représentation irréductible p3 = sgn.

La table de caracteéres est la suivante :
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L’orthonormalité de ces caracteres confirme notre affirmation selon laquelle ils sont irréduc-
tibles. On appelle ps la représentation standard. n

m Exemple 4.9 — Les représentations irréductibles de S;. Le groupe Sy a 5 classes de conjugaison :
id, (12), (123), (1234) et (12)(34). Les représentations que 'on vient de calculer pour S
sont naturellement des représentations de Sy. Cela nous donne déja un morceau de la table des
caracteres.

id (12) (123) (1234) (12)(34)
X1 (triviale) 1 1 1 1 1
X2 (standard) 3 1 0 -1 -1
X3 (signature) 1 —1 1 -1 1

Soit dy et ds les degrés des représentations restantes. Par le corollaire 4.18, d% + d? = 13,
d’ou dy = 3 et d5 = 2. Obtenir une représentation de degré 3 est facile : puisque py est de
degré 4 —1 =3, po ® p1 et ps ® p3 sont de degré 3. La premiere option ne fonctionne pas car le
caractere Xp,ep = X2X1 est égal a xo. Néanmoins, x4 := X,,eps = X2X3 st bien un caractere
irréductible. Le corollaire 4.19 nous donne le caractére ys restant.

id (12) (123) (1234) (12)(34)

X1 (triviale) 1 1 1
X2 (standard) 3 1 -1 -1
X3 (signature) 1 —1 1 -1 1
X4 = X2X3 3 -1 0 1 —1
s 2 0 1 0 P

Cet exemple illustre le pouvoir de la théorie des caracteres. Méme sans rien connaitre sur
la cinquieme représentation, on a pu en calculer son caractere. n

m Exemple 4.10 — Les représentations irréductibles du groupe alterné A4. Le groupe A4 (le
sous-groupe de Sy est constitué de permutations paires) a 4 classes de conjugaison : id, (12 3),
(132) et (12)(34). Certes, la représentation triviale est toujours irréductible. Pour obtenir deux
autres représentations, on va utiliser une astuce. On s’apercoit que le sous-groupe

K = {id, (12)(34), (13)(24), (14)(23)}

est normal dans Ay. De plus, Ay/K = 7Z/37Z. Alors, si m : Ay — 7Z/37 est la projection
canonique et p est une représentation non-triviale de Z/3Z, on a que p : Ay — C*, défini par
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la commutativité du diagramme

(CX

est une représentation irréductible de A4. (La représentation triviale de Z/3Z deviendrait la
représentation triviale de Ay.) On obtient ainsi deux nouvelles représentations irréductibles
p2, p3. Pour obtenir le caractere de la derniere représentation p,, on utilisera a nouveau le
corollaire 4.19.

La table de caractéres est la suivante, ol on a mis w = /3.

id (123) (132) (12)(34)
x1 1 1 1
Yo 1 w w?
x3 1 w? w
X4 3 0 0 -1

Comme on verra a nouveau dans l’exemple suivant, l'astuce de « relever » des représentations
(plus simples) d'un quotient est tres utile. n

m Exemple 4.11 — Les représentations irréductibles du groupe des quaternions ). Le groupe des
quaternions est donné par () = {ii, +7, 47, j:E} ot —1 commute avec tous les éléments de Q
ot 2 = j2 = k2 = 2}@ = —1. Ce groupe est un exemple de groupe hamiltonien non-abélien.
Autrement dit, chaque sous-groupe de () est distingué méme si () n’est pas abélien. Comme les
classes de conjugaison de @ sont 1, —1, 7, 3, %, il faut trouver 5 représentations irréductibles.
La méme astuce que l'on a fait précédemment nous en donne quatre. On vérifie que

iﬁﬁxﬁ
(1} 22" 2Z

et donc les 4 représentations irréductibles du groupe de Klein sont aussi représentations irré-
ductibles de . On obtient ainsi la table de caracteéres suivante :

=

1 -1 ¢« 7 k
yi 1 1 1 1 1
Y2 1 1 -1 1 -1
ys 1 1 1 -1 -1
yoa 1 1 -1 -1 1
xs 2 =2 0 0 0

Comme toujours, la derniére représentation a été trouvé en utilisant le corollaire 4.19. =
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Ces exemples illustrent une procédure générale : étant donné un groupe fini GG, son sous-
groupe dérivé [G, G] est toujours distingué et le quotient G/[G, G| (appelé I'abélianisé de G)
est toujours abélien. Les représentations de G /[G, G| sont connues et on obtient donc quelques
représentations irréductibles de G.

Lors de la visualisation des tables de caracteres obtenues dans cette section, on nous pose
quelques questions : comment construire les représentations de S,, pour n > 47 Comment
relier les représentations de S, a celles de S,,, pour n # m? Pourquoi, dans la plupart de nos
exemples, les caracteres ont-ils des valeurs entieres ?

Le but des sections suivantes est de répondre a ces questions.

4.7 REPRESENTATIONS INDUITES

Soit GG un groupe et H un sous-groupe de G. Supposons que l'on ait une représentation
p: G — GL(E) de G. Pour obtenir une représentation de H, il suffit de faire la restriction de p
a H. Cette nouvelle représentation est dénotée Res$; p : H — GL(F). La méme procédure peut
étre effectuée avec des fonctions de classe. C’est-a-dire qu’étant donnée une fonction de classe
f G — k, sa restriction Resg f : H — k est définie par Resg f = flu. On observe que ces
opérations sont compatibles : Res% Xp = XResG p-

Notre objectif dans cette section est, étant donné une représentation o : H — GL(FE) de H,
d’obtenir la représentation « la plus générale possible » de GG. La propriété universelle ci-dessous
donne un sens précis a cette idée.

Définition 4.12 Soit o : H — GL(FE) une représentation de H. On dit que Ind% o : G —
GL(E), ot E est un espace vectoriel sur le méme corps que E, est la représentation induite
par ¢ s'il existe i¢ € Hom(E, E)¥ telle que pour tout représentation p : G — GL(F) de G
et pour tout f € Hom(E, F) il existe une unique application fe Hom(E , )Y telle que le
diagramme

G
E——F

\’Ellf
F

commute.

Comme d’habitude avec les propriétés universelles, si la représentation induite existe, elle
est unique a isomorphisme pres.

Théoréme 4.21 La représentation induite existe.

Démonstration. Pour construire la représentation induite, on a besoin d'un espace vectoriel
E, d’une représentation Indga de G, d’'une application linéaire H-équivariante i% et d’une
application linéaire G-équivariante f.
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e [’espace vectoriel E.

Pour chaque classe a gauche 7 € G/H, on choisit un représentant g, quelconque de 7 et on
prend une copie g, F de E. Ensuite, définissons 'espace vectoriel F par

D 9.F

T€EG/H

On dénote par g,v, I’élément correspondant a v € E en g, F.
e La représentation Ind$ o : G — GL(E).

Pour chaque classe 7 € G/H soit g, un élément quelconque de 7. Puisque G/ H est une partition
de G, pour tout g € G et pour tout 7 € G/H, il existent 7/ € G/H et h € H tels que

99- = g-'h.
Enfin, on définit I'action induite par
g- (gTUT) = g7/0<h)vT'
e L’application linéaire H-équivariante i : £ — E.

Soit e la classe H € G/H. Alors, on définit application linéaire i par v — g.v. Pour montrer
que cette application est H-équivariante il faut prouver que le diagramme

E
U(h)‘/
E

commute pour tout h € H. Clest-a-dire que i§ o o(h) = Ind% o(h) o 7. Alors, puisque g, =
H = eG/va

H
-
Ind§ o(h)

H
Y

o ——

Ind% o(h)(gev) = h - (gov) = geo(h)v.
e [’application linéaire G-équivariante f . E— F.

F
F
commuter pour tout g € G. Alors, la propriété universelle (f(v) = f(gev)) et la G-équivariance

(f oInd$ o(g) = p(g) o f) forcent la définition de f
flgrv) = flgr - (97" 970)) = plgr) © Flgr " - grv) = plgr) © f(0).

L’extension de f sur F par linéarité satisfait certainement la propriété universelle et est G-
équivariante. O

Dans ce cas, G-équivariance équivaut au diagramme

\>

IndG

\>

D1><7D1>
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On calcule la caractére de Ind$ o :

Proposition 4.22 Soit 0 : H — GL(F) une représentation d’un sous-groupe H de G. Alors,

X1mag o(9) = D Xo(97'99-) H > Xo(s7'gs),
T€G/H | | seG
ol
- Xo(9) sigeH
Xo(9) = { .
0 sinon.

Démonstration. Soit d = [G : H] et n = dim E. Pour faciliter la notation, on dénote les
représentants g, des classes a gauche par 1, ..., ¢q. Etant donnée une base ey, ..., e, de E, les

nd vecteurs t;e; forment une base de E.Onva trouver la représentation matrlclelle de Ind% o(g)
en fonction de la base donnée.
Alors, si v; = tjv il existe ¢ € {1,...,d} tel que

Indg o(g)v; =g- (tjv) = tio(ti_lgtj)v.

Cest-a-dire que la représentation matricielle de Ind% o(g) est

oti'gh) olti'gts) ... o(ti'gta)
olty'gh) olty'gts) ... o(ty'gta)
olty'gh) o(tyigts) ... olty'gta)

ot o(t; 'gt;) doit étre considéré comme la matrice nulle si ¢; 'gt; ¢ H. On en déduit que

d
X1nd€ o Z (t; " gti)-
Alors, puisque G = [[{, t;H,
1 1,-1
Xo(s77gs) = — Xo(h™t; "gt;h).
i S 7 2 2,

Comme h~'t;'gt;h € H si et seulement si t; 'gt; € H et X est une fonction de classe,

d
|H| Z Z Xo(h lt gtih) |H| Z Z Xo(t; gt Z)Za(ti_lgti)'
=1

i=1 heH =1 heH

Le résultat suit. O]
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Ce résultat nous motive a définir des fonctions de classe induites. Si f € Ci(H), on définit
Ind$, f € Cw(G) par

flg) sigeH
0 sinon '

Ind$ f Z s1gs), ol f(g) ::{
G

Cette définition implique Ind$ y, = Xmd§ o> cOmme on avait pour les restrictions. Enfin, on
prouve le résultat le plus important de cette section :

Théoréme 4.23 — Réciprocité de Frobenius. Soient f; : H — k et fy : G — k des fonctions
de classe. Alors,

(Ind% f1, foYor) = (f1, Res% fa)ewim

Démonstration. Comme chaque fonction de classe est une combinaison linéaire de caracté-
ristiques irréductibles et ( - - ) est bilinéaire, on peut supposer que f; = x; et fo = x2 sont
des caracteres irréductibles. Si x; est la caractere de p; : G — GL(E;), on dénote Indg pi par
Indg E; (pareillement, Resg p; par Res¢ 7 E:). Donc, 'égalité que I'on veut prouver équivaut a

dim Hom(Ind$, B, E,)¢ = dim Hom(FE,, Res% F,)"

Ce n’est rien d’autre que la propriété universelle appliquée a p; : G — GL(E»). n

Montrons maintenant comment la cinquieme représentation de I’exemple 4.11 peut étre vue
comme une représentation induite.

m Exemple 4.12 Soit H = (i) un sous-groupe de Q. Alors |H| = 4 et donc [Q : H] = 2.
Considérons la représentation o : H — C* donnée par o(i*) = i*. Alors, on utilisant la
représentation matricielle de Ind% o(g) donné dans la démonstration de la proposition 4.22
avec t; = Tet ty = ] on voit que

Ind$ o(+1) = + l(l) ﬂ , Ind% o(+1) = + [Z O.] ;
Ind% o(+)) = + l(l) _011 : Ind$ o(+k) = + [ 0, _011 :
—1

D’ott on conclut que le caractére de Ind% o est ys. "

4.8 LES REPRESENTATIONS DU GROUPE SYMETRIQUE

Comme on verra, les partitions d’un entier sont étroitement liées aux classes de conjugaison
de S,. En particulier, chaque partition de n donne de fagon bijective une classe de conjugaison
et donc une représentation irréductible de S,,.
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Définition 4.13 — Partitions. Une partition d’un entier n > 0 est une décomposition de cet
entier en une somme d’entiers strictement positifs \; + ... + Ay = n telle que A\ > Ay >
-+« > Xp. On écrit A F n pour dire que A = (A, -+, \y) est une partition de n. Le nombre
de partitions de n est dénoté par p(n).

m Exemple 4.13 L’entier 5 a 7 partitions :
5=5

=4+1
=342
=3+1+1
=24+2+1
=2+1+1+1
=1+1+1+1+41.

Les partitions sont toujours écrites par ordre décroissant et sans zéros. n

On va utiliser les diagrammes de Young pour écrire ces partitions. Etant donné une partition
A= (A1, -+, Ar) de n, son diagramme de Young se compose de A; boites dans la premiere ligne,
Az boites dans la deuxiéme ligne et ainsi de suite. 1" Le diagramme de Young de (3,1, 1) est

Si A I n, la partition transposée AT est la partition dont le diagramme de Young est obtenu du
diagramme de A en échangeant des lignes et des colonnes.

m Exemple 4.14 La partition transposée de (2,2,1) est la partition dont le diagramme est

T

Dow, (2,2,1)T = (3,2). .

I Définition 4.14 — Type d’une permutation. Le type de o € S, est la partition de n donnée
par les longueurs de cycles dans la décomposition de ¢ en tant que produit de cycles disjoints.

m Exemple 4.15 On peut écrire la permutation

(12345678
"8 1275346 8

comme o = (18632)(47) et donc le type de o est (5,2,1). (Ne pas oublier que l'on a omis
I'élément 5, qui est fixé par o.) "

17. Certains auteurs préferent écrire les diagrammes de Young avec A;_; boites sur la i-éme ligne.
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La proposition suivante est la raison pour laquelle on étudie les partitions dans ce contexte.

Proposition 4.24 Deux éléments de S, sont dans la méme classe de conjugaison si et seule-
ment s’ils ont le méme type.

Démonstration. D’abord on voit que si (a; - - - a) est un cycle et o € S,,,
olay---ap)ot = (o(ar) - olag)).

Cela peut étre prouvé en regardant I’action des deux cotés en o(a;). On en déduit que

—

olay--ag)...(by--by)o = [J(al e ak)a_l} oo |o(by bs)a_l}

Ce résultat implique que deux permutations conjugués ont le méme type. En revanche, si

01:(a1~~-ak)...(b1~--bs)
oy = (@i ap) .. (b - 0)

sont deux permutations avec le méme type, on peut choisir une permutation 7 € S, telle que
ay =7(d)), -+, ap =7(a}), -+, by =7(b}), -+, by = 7(b.). Enfin on a o9 = 70,7, donc oy
et 09 sont dans la méme classe de conjugaison. O

Corollaire 4.25 Le groupe S, a p(n) classes de conjugaison et donc p(n) représentations
irréductibles.

On va maintenant remplir les diagrammes de Young avec des entiers 1,...,n.

Définition 4.15 — Tableaux de Young. Soit A - n une partition de n. Un A-tableau t est un
diagramme de Young de A, rempli avec des entiers 1,--- ,n. Si A = (A1, -+, A\¢), le A\-tableau
qui a les entiers 1, .-, A\; sur la premiere ligne, \; +1,--- , A\; + A\ sur la deuxieme, et ainsi
de suite est dénoté ).

m Exemple 4.16 Ce sont des 6 tableaux de Young associés a la partition (2,1) de l'entier 3 :

2 113 213 2|1 311 312
3 T2 o1 "3 T2 ’
Bien stir, il y a n! tableaux de Young pour chaque partition A - n. m

m Exemple 4.17 Le tableau t(4 1) est
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Ce qui nous intéresse vraiment dans cette numérotation, ce sont les numéros de chaque
ligne, mais pas sa position. Cela nous motive a dire que deux tableaux sont équivalents s’ils ont
les mémes entrées dans chaque ligne. Ce relation ~ est une relation d’équivalence.

m Exemple 4.18 On a

4 6 5

3 ~ 3
mais

4 6 6

3 ~ 3

puisque le tableau de gauche a des chiffres {4,5,6} dans la premiére ligne et le tableau de droite
a{4,2,6}. "

Définition 4.16 — Tabloid de Young. Une classe d’équivalence de A-tableaux est un A-tabloid.
L’ensemble des A-tabloids est dénoté 7. On appelle T la classe d’équivalence du tableau
ty.

Le groupe S, agit (transitivement) de fagon naturelle sur des A-tableaux en appliquant
o € 5, aux entrées de la boite.

41213 3121
(143)- - .
115 415
| |

Cette action passe bien au quotient. C’est ce que montre la proposition suivante.

m Exemple 4.19

Proposition 4.26 Soient t1,ty des A-tableaux et o € S,,. Alors t; ~ ty implique o -t ~ o - ts.
C’est-a-dire que I'on peut définir une action sur 7% en faisant o - [t] = [0 - t].

Démonstration. On veut montrer que deux entiers ¢, j sont dans la méme ligne de o - t; si et
seulement s’ils sont dans la méme ligne de o - t5. Alors,

i,7 sont dans la méme ligne de o -, <= o '(i),0 ' (j) sont dans la méme ligne de #;
<= o (i),07(j) sont dans la méme ligne de Z,

<= 1,7 sont dans la méme ligne de o - t,.

Le résultat suit. O]

On calcule alors le stabilisateur de T, ou A = (A1, -+, A¢). On veut trouver tous les per-
mutations o € S,, telles que o - T = T). Bien siir on a

Stabg, (T)\) = S{L.‘.’)\l} X S{A1+17.‘.7>\1+>\2} X ... X S{)\1+...+)\[_1+1,~",7L}7
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ou Sy, pour X C {1,--- ,n}, est défini comme I'ensemble des permutations qui fixent tous les
¢éléments en dehors de X. Par la formule des classes (Corollaire A.16),
Sh n!
1] = 05, (T3)] = rgionl . =

~|Stabg, (Th)] — A1l A
Etant donné une partition A, on I’associera & la représentation de permutation p* : S, —
GL(C[T?)).

m Exemple 4.20 Si A = (n — 1, 1), deux A-tableaux sont équivalents si et seulement s'ils ont la
méme entré dans la seconde ligne. C’est-a-dire que chaque élément de T peut étre identifié par
I'élément de {1,...,n} dans la seconde ligne. On en déduit que C[T*] = C[{1,...,n}] = C".
L’action est bien stir donnée par

On peut décomposer cette action comme

C" = <Z€l> ©® {Zciei e C"
=1

i=1

ZCi = 0} .
=1

Les deux termes sont irréductibles. Le premier est isomorphe a la représentation triviale et le
second est appelé la représentation standard. n

Comme l'on a vu, normalement la représentation p* n’est pas irréductible. Cependant,
chaque représentation irréductible de S, est un constituant de p* pour une certaine partition
A Fn. C’est ce constituant que l'on veut isoler.

Pour simplifier la notation, on écrit C; pour le stabilisateur des colonnes d'un tableau ¢,
défini comme Stabg, (t7). Si Cy, - -+ , Cy sont des colonnes de ¢, alors

Cy =S¢, X ...x8¢,.
Définition 4.17 — Polytabloid. Soit A - n et t un A-tableau. L’élément

Rii= Y (su) p(m) [

weCy
de C[T?] est appelé le polytabloid associé a t.

Cette formule doit étre interprétée comme suit : étant donné un A-tableau t, on considere
sa classe d’équivalence [t] et prenons son image (un élément de C[T?]) par p*(7), pour 7 € C;.
Enfin, on fait une combinaison linéaire de ces vecteurs avec des poids sgn(m).

A ce stade, on a deuz interprétations plausibles pour Uezpression o - [t]. Cela peut étre
le A-tabloid donné par laction de S, ou l'image de [t] par la représentation de permu-
tation p*(c). Pour éviter toute confusion, on utilisera systématiquement la premiére
interprétation.
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I Proposition 4.27 Soit o € S, et t un A-tableau. Alors, p*(0)k; = Ko.s.

Démonstration. Par la proposition A.14, C,., = 0Cyo~t. Alors, si 7 = omo !,

pN(o)ry = p*(0) ( > (sgnm) pA(W)[t])

TeCh

— Z (sgno~'ro) p/\(U)P/\(U_lTU)[t]

7€C.¢

= > (sen7) p*(ro)[t]

7€Co.¢

= > (sgn7) p*(7)lo - 4.

7€Cs.¢
Le résultat suit. O
Cette proposition indique, en d’autres termes, que le sous-espace de C[T?] engendré par

les polytabloids x; est stable sous l'action de 5,,. C’est-a-dire que ce sous-espace a une sous-
représentation correspondante.

Définition 4.18 — Représentation de Specht. Soit A\ - n. On définit S* comme le sous-
espace de C[T?] engendré par les polytabloids k;. La sous-représentation correspondante
P 0 S, — GL(S?) est la représentation de Specht associé a .

m Exemple 4.21 Si A = (n), il n'y a qu’un A-tabloid : la classe d’équivalence T du tableau t)

11213 -|n|.

Aussi, Cy = {id} pour tout A-tableau t. Alors,
ke = (sgnid) p*(id)[t] = Th.

I1 suit que la représentation de Specht associé a A est isomorphe a représentation triviale. =

m Exemple 4.22 Soit A = (1,1,---,1) une partition de n et ¢t un A-tableau. Puisque ¢ n’a qu'une
colonne, C; = S,,. Alors on calcule ¢*(0)k; pour o € S, :

pro)ke =) (sgnm) p*(o)p*(m)[t]

WESn

=D (sgno™'7) p(7)lt]

TESn
= (sgno)s,

ol T = or. La représentation ¥ est isomorphe & représentation de la signature, définie par

S, —  GL(C)
o — (z— (sgno)z).

Cette représentation est toujours irréductible. "
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m Exemple 4.23 On revient a 'exemple 4.20 ou A = (n — 1, 1). Soit ¢; le A-tableau

~

l

ot 72 indique que I’élément i a été omis. Pour faciliter la notation, on écrira les éléments e, de
C[T?] comme e;. Alors, si t est de la forme

1

J

on voit que k; = e; — ;. D’ou il suit que

S)\ = {ch-ei e C" Zci = O}
i=1 =1

et que la représentation de Specht associé est la représentation standard. "

Le lecteur peut deviner ’étonnant prochain théoreme :

Théoreme 4.28 Les représentations de Specht 9, pour \ - n, forment un ensemble complet
de représentations irréductibles inéquivalentes de S,,.

La preuve de ce théoreme est basée sur une série de lemmes et échappe a la portée de
cet exposé. On pourra la trouver dans la référence [29]. Il est préférable d’étudier quelques
corollaires de ce résultat.

Définition 4.19 — Tableau de Young Standard. Soit A - n. On dit qu'un A-tableau est
I standard si les entrées sont croissantes dans les lignes et dans les colonnes.

m Exemple 4.24 Les tableaux

et

O | | W =

sont standards tandis que

et

O | O —

ne le sont pas. ]

Comme nous 'avons vu dans les exemples 4.21 et 4.22, les polytabloids sont généralement
linéairement dépendants dans S*. Heureusement, cet espace vectoriel a une base naturelle.
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Proposition 4.29 Soit A une partition de n. Alors
{k¢ |t est un A-tableau standard}

est une base de S*.

Soit f* le nombre de M-tableaux de Young standard. Le résultat précédent a les corollaires
sulvants.

I Corollaire 4.30 Si \ - n, alors dim S* = 2.

Corollaire 4.31 Si n est un entier positif,

> (M) =nl,

AFn

ou la somme est sur toutes les partitions A de n.

Démonstration. Cela découle des corollaires 4.18 et 4.30. O]

Etant donnée une partition A de n, on peut calculer le nombre f» = dim S* en utilisant
la formule des équerres (en anglais, « hook-lenght formula ») que I'on verra maintenant. Pour
faciliter la notation, notons par A une partition de n et son diagramme de Young correspondant.

Définition 4.20 Soit A un diagramme de Young. Pour une boite u dans le diagramme (noté
u € A), on définit I'équerre de u comme étant I'ensemble de tous les boites directement
a droite de u ou directement en dessous u, y compris lui-méme. Le nombre de I'équerre
s’appelle la longueur de I’équerre de u et est noté hy(u).

m Exemple 4.25 On considére la partition A = (5,4,3,1). A gauche on voit 'équerre de u et &
droite on voit les longueurs des équerres de chaque boite.

ule|e|e 816|531
° 6
° 412
1
"

Le résultat suivant sera démontré a ’aide du théoreme 4.36 qui sera présenté dans la derniere
section de ce chapitre. Pour cette raison on omettra sa preuve pour l'instant.

Proposition 4.32 — Formule des équerres. Soit A\ une partition de n. Alors,

P n! .
Hue/\ h/\(u)
Dans le cas A = (5,4,3,1) de 'exemple 4.25, on a

13!
8-62-5-42.32.2

A= = 15015.
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4.9 LE TREILLIS DE YOUNG

Les groupes symétriques portent une inclusion naturelle :
S1CS, CS;3C---CS, C---

ou, pour n < m, on voit ¢ € S, comme une permutation de S,, fixant les derniers m — n
numéros. Cela nous ameéne a étudier la représentation induite de 5, dans S, et sa restriction
dans S,_1.
Définition 4.21 — Treillis de Young. Soient A et p deux diagrammes de Young. On note
A — p si p peut étre obtenu a partir de A en ajoutant une seule boite. Alors, I’ensemble de
diagrammes de Young, avec 1'ordre partielle

A< pu s’il existe Vi,...,Vp, telque A— vy — ... =1, = LU,
est appelé treillis de Young.

On peut représenter graphiquement le treillis de Young comme suit.

111 | u

L[]

YaY,
\

[]

Q| —
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Evidemment on n’a dessiné que le bas du diagramme. Ce diagramme est généralement appelé
diagramme de Hasse. Dans une série d’articles, Alfred Young a présenté le beau théoreme ci-
dessous, qui montre une facon facile de calculer la représentation induite de .S,, dans S,,;1 et sa
restriction dans S,,_1.

Nous omettrons la démonstration du prochain théoreme énoncé. Le lecteur intéressé pourra
trouver plus de détails sur ce théoreme dans [33].

Théoréme 4.33 — Régle de branchement de Young. Soit A - n. Alors,

Ressr 2 P o* et Indg* = @ ¢+,

U= A—=rp

m Exemple 4.26 Pour illustrer ce résultat, considérons A = (5,4,2,2,1) - 14. Le diagramme de
Young correspondante est

Alors, en élevant une seule boite on obtient les diagrammes de Young suivantes.

On en déduit que
Resﬁﬁ POAZZY (44220 g (5:3220) gy (BA21D) gy ) (5,42.2)

De méme, en ajoutant une seule boite on obtient les diagrammes de Young ci-dessous.

Donc,

15
Ind§14 w(574727271) P w(674927271) @ w(57572»271) @ 1/}(574’37271) EB ¢(574727272) @ w(5»472’2:171)_
|

La regle de branchement de Young nous donne une nouvelle fagon de regarder la proposition
4.29, qui nous donne une base de S* en termes des M-tableaux standards. Le théoréme 4.33

implique que
PPy P osex.. e s

H1—A Ho—>p1—>A D=y —> ... = 41—
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Puisque dim S? = 1, on a une correspondance directe entre une base de S* et des chemins entre
& et A dans le treillis de Young. Néanmoins, un tel chemin donne lieu a un A-tableau standard
comme on voit dans ’exemple suivante.

m Exemple 4.27 Considérons le chemin entre @ et A = (4,2,1) :

| [ ]
@—>D—>H—> ‘—> — — — .

On peut numéroter les diagrammes de gauche a droite :

3
13] ,[1]3
®—>—>—>2 — 5t

4| —

w
w

6

617

_>

‘O‘ll\D»—*

‘Cﬂl\l)»—*
S

=
S

Bien siir, le A-tableau a droite est standard. De fagon similaire, chaque A-tableau standard
donne lieu a un chemin. "

4.10 LA FORMULE DE FROBENIUS

Dans cette section, nous étudierons une formule, due a Frobenius, qui relie un probléme
combinatoire a la théorie des représentations de groupes finis.

Etant donné un groupe fini G et des classes de conjugaison C,...,Cy, on s'intéresse i
calculer le nombre

N(G,Ol, ,Ck) I:H(Cl,"‘ ,ck)EClx...xC’k|cl...ck:eg}].

On observe d’abord que N (G;Cy,---,C}) ne dépend pas de lordre des arguments puisque
lidentité c¢;c;v1 = ¢i11(c, Jrllciciﬂ) nous permet d’échanger C; pour Cj.

Théoréeme 4.34 — Formule de Frobenius. Soit G un groupe fini et des classes de conjugaison

Ci,...,C) dans G. Alors,
|Cl |Ck

N(G;Cy,- - ,Ck) = 'Z ) (0;3)’

ou la somme est sur tous les caracteéres irréductibles de G.

Démonstration. Pour chaque classe de conjugaison C, considérons I'élément ec := 3" cc ey €
C[G]. Si p est une représentation irréductible de G' (vue dans C[G]), ec peut étre vu comme
une application p-équivariante de C[G] dans lui-méme.® Par le lemme de Schur, on conclut
qu'il existe un nombre complexe v,(C) tel que p(ec) = v,(C)id. Alors, puisque x(C) = x(g)
pour tout g € C,

ICIx(C) = > x(g ec)) = vp(C)x(eq).

geC

18. On définit ec(ey) = D, cc eng et on étend par linéarité.
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On en déduit que

x(©)

v,(C) =
P( ) X(eG)

Alors on calcule la trace de 'action de

E:eCIOGCQO...Oeck: Z Z €ey...c

c1€C c,€Cy

€.

dans C[G]. Puisque le caractere de la représentation réguliére est

G| sig=ec
XC[G] (9) = .
0  sinon
on conclut que cette trace vaut |G|N(G;Cy, -+, Cy). Aussi, comme C[G] est somme directe

des représentations irréductibles (corollaire 4.17)

clo) = @ Be e,

i

ou les E; forment un ensemble complet de représentations irréductibles, et ec agit par multi-
plication par scalaire, on en déduit que la trace vaut

S (C) - (C)(dim B2 = ] -y 32 XC) - x(C)
i X X(eG)k 2

Le résultat suit. O]

On va nous intéresser principalement au cas G = S,, qui, suivant Schur, est généralement
écrit en utilisant la notation suivante.
Définition 4.22 Soit C' une classe de conjugaison de S, et A une partition de n. On définit
fo comme la fonction suivante :

xX*(C)
I

ott x*(C) est le caractére de la représentation de Specht associé & A évalué sur n’importe
quel élément de C'. Si C' est la classe d’'un m-cycle, on écrira f,, au lieu de f¢.

fe(N) =1C]

Corollaire 4.35 — Formule de Frobenius pour S,,. Soient (1, ..., C} des classes de conjugaison
dans S,,. Alors,
1

n!

N (Sn; 1y -+, Cr) (N fer () - fe ().

AFn

Une application intéressante est une formule pour les caracteres des représentations de
Specht (ce résultat s’appelle également formule de Frobenius).
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Théoréme 4.36 — Formule de Frobenius. Soit x* le caracteére de la représentation du groupe
symétrique .S,, correspondant a une partition n = Ay + ...+ Ay et on pose {; = \; +k — .
Notons C), la classe de conjugaison de S, correspondant aux permutations de type ,u et soit

i; le nombre de fois ol j apparait dans u. Alors x*(C,,) est le coefficient de 7' . % dans
1<j J

m Exemple 4.28 Pour illustrer ce résultat, on recalcule la valeur du caractere ys de Sy calculé
dans le exemple 4.9. En fait, on va montrer que le caractére ys provient de la représentation
correspondant a A = (2,2). C’est-a-dire au diagramme de Young

Danscecasona f; =2+2—1=3et l, =2+2—2=2. Les types des classes de conjugaison
de S, sont

Hid = <1a17171)7 KR 2)) = (27171)7 Ha23) = (371)7
Ha234) = (4); H(12)(34) = (272)~

Enfin, les valeurs de x* sont les coefficients de 2322 dans les polyndmes suivants :

5
= 2% + 3xixy + 20323 — 22305 — 3wy2h — 25

T — 29) (1 + x2) (23 + 23) = 2f + wiwy + 02323 — 2125 — 23 ;

Ty — To) (71 + xQ)(xl + a:Q) = 2% — lodas + 2323 — 25 ;

4 _ 5.
— xiwg + 02323 + 2125 — 3 ;

4

o (z1 — x2)(x + 22)

(
(
°
o (v — xo)(x} + 25

2) =
(11 — @) (22 + 23)? = 2% — atwy + 20322 — 22223 + x 125 — 5.

On voit ainsi que
XMid) =2, xM(12) =0, xM(123)=-1, x((1234)=0 et x*(12)(34)) =2.

Cela implique que s est le caractére provenant de la représentation de Specht . "

L’un des corollaires du théoreme 4.36 est la réponse a notre observation précédente selon
laquelle les tables de caractéres des représentations S,, n’avaient que des entiers.

I Corollaire 4.37 Les caracteres des représentations de Specht ont des valeurs entieres.
On peut également démontrer la proposition 4.32 a 'aide de ce théoreéme.
Corollaire 4.38 — Formule des équerres. Soit A une partition de n. Alors,

n!

A
P = om@’
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Démonstration. Tout d’abord, notons que la dimension de ’espace vectoriel S* peut étre
trouvée en évaluant son caracteére dans la classe de conjugaison de l'identité (p = (1,1,...,1)).
Cest-a-dire que f* est le coefficient de " .. xi’c dans

1_[(55Z —xj) (@ + . )"

On rappelle que le déterminant de Vandermonde est

1 T e (E]Iz_l
1 oy - ab7d _ _
L s (o) = [ - )
oESK 1<J
1 T oo xlffl

et que, par la formule du multindme de Newton,

n!
n ‘s T
(k14 ... +ap)" = E — 'x11...xkk'
r1+..+rg=n e Tk

fk

Apres multiplier les deux sommes, on voit que le coefficient de z¥' - - est égal a

n!

> sen(o) (6—o(k)+ D) (b — (D) + 1)

ocESk

En effectuant quelques manipulations algébriques, on s’apercgoit que 'expression ci-dessus est
équivalente a

k

!
Lngn YIT G —1) - (4 —k+0(j) +1)
Ol Gl s, Jaie]
1 by 00, —=1) o by (b —k+2)
nt | o . _
:m : : . : —mn(&:—@'),
1 6 6 —1) - b (h—k+2) =

car on peut réduire ce déterminant-la au déterminant de Vandermonde en faisant des opérations
de réduction sur les colonnes.

On note également que chaque ¢; correspond a la longueur du j-ieme équerre de la premiere
colonne (que 'on dénote u;). Il suffit, maintenant, de montrer que

n! n!

g LG =) = =5

1<J

On suit par récurrence du nombre de colonnes de A. Si A n’a qu'une colonne, {; =n —j+1 =
hy(u;) et donc

. A . R T L
dlms—n!(n—l)!-nl!g(n iN=1=—.
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Soient A la partition de n — k obtenue en supprimant la premiere colonne de A, k le nombre
des lignesde Aet £; =\;j+k—j.Onal;—(; = —(k—k)—1et {;—; = {; — {;. Par hypothese
de récurrence o

Hz‘<j(£i - Ej) _ 1
H§:1 Z;! [T, ex hx(u)

et du fait que ¢; = hy(u;), on obtient

. | Mgy — 4)) n! I, 4!
dim §* = — = . 2i<i I — . =17 b —05).
Tt Tl D @) Ty -t LG 5)
k<j
Notons que
- (& —1)!
116 =4) H II G-6)=1I
%2 i1 o (i) 5 (0 =1 — k4 max(i, k)

Sii >k, alors {; = k —i+1 (car il n’aura aucune boite a droite pour de u;), ce qui nous donne

k k
H H (6; —1)!
=1 z- :E
En substituant dans I’expression trouvée précédemment, on obtient le résultat désiré. O

m Exemple 4.29 On va calculer la valeur de f,,, liée a un m-cycle. En effet, tout d’abord on a
que la taille de la classe de conjugaison C,, correspondant a un m-cycle est

n!
’Cm’ =

m(n —m)!
Cela découle du fait que pour avoir une permutation o que a un m-cycle, il suffit de fixer n —m
éléments (ce qu I'on peut faire de (nfm) fagons) et apres compter les nombres des permutations

cycliques qu’on peut avoir avec les m éléments qui restent (évidemment (m — 1)!).
De plus, la démonstration du corollaire ci-dessus nous montre que

A ”' _ /.

z<]

1l suffit donc de calculer x*(C,,).
On pose A(ly, -+, ly) == Tl;c;({; — £;). Par le théoréme 4.36, x*(Cl,) est le coefficient de

e .
... x, dans I'expression :

@i —zj) (@i + ...+ )™ (@] + ..+ ) Zx (@i — ) (@1 + ...+ )™

1<j 1<j
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Encore par ce que 'on a vu dans la démonstration du corollaire précédent, le coefficient désiré
est

Ekj (n—m) AWy, ... . 0g—m,... .0)

s=1
On conclut que
A
XMCm) n! (n —m)! /! ly—1l;—m
m A) = Cm = : )
Jm(A) = ol f> m(n —m)! n! ;(ﬁs—m)!jl;ls ly—1;
ol (ef_&in)! =Ll;(ls—1)---(ls —m + 1) méme si ; < m. On peut également écrire :
[REVE e |
" _mszl(ﬁs—m)!ﬁés ls—1;)

Ce résultat nous sera utile dans le chapitre 5. n

Enfin, un dernier corollaire sera important pour notre étude ; il traduit le fait que A — x*(C)
ne dépend que de la différence A\; — j.

Corollaire 4.39 Pour toute classe de conjugaison C' de S,,, on a fo € A*, I’algebre des fonctions
symétriques décalées (cf. exemple A.17).

On ne montrera que fo est symétrique décalé; le raisonnement plus complet, qui prouve
que en plus que f¢ est en fait un polynéme, peut étre trouvé dans [17].

. . . N , 2 ¢
Démonstration. D’abord, on observe que les coefficients des mondomes :L'li1 . :Ef coxfxh
0y Ej l; fk
et xy' .o oxy ot dans

[Tt — 2) TId + ...+ )"

1<y J

sont les mémes a signe pres. (Ils ont les signes inversés.) On en déduit que x*(C)/x*(id) est
invariant par transposition des ¢; et donc fo est symétrique dans les variables A\; — 1. O
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5
L’APPROCHE ALGEBRIQUE AUX VOLUMES
DE TEICHMULLER

5.1 APERQU DE LA METHODE

On revient sur le troisieme chapitre, ot on a obtenu une méthode de calcul des volumes de
Teichmiiller ; a savoir le théoréeme 3.1. De manieére explicite, si kK = (K1, . .., k) est une partition
de 2g — 2, alors

) 1
Ml(Hl(’%lv <o 7'%71)) = 2(29 +n— 1) Tlggo W ’ m(r),

ou m(r) est le nombre de surfaces a petits carreaux avec des singularités coniques d’angles
2n(k1 +1),...,27(Kk, + 1) qui peuvent étre construites avec au plus r carrés.

Apres A. Eskin et A. Okounkov [7], on considere le nombre Cy4(k) des surfaces a petits
carreaux X qui ont des singularités coniques d’angles 27ky, . . ., 27k, et peuvent étre construites
en utilisant d carrés avec des poids | Aut(X)|™, oit Aut(X) est le groupe des automorphismes
de X.

On observe que larticle [7] utilise une normalisation différente de celle utilisée jusqu’a
présent pour la mesure de Masur-Veech. Par conséquent, certaines de mos formules
ont un aspect différent.

Normalement, le groupe des automorphismes Aut(X) est trivial. Par conséquent, m(r) et
S Calk + T), ot I = (1,...,1), ont le méme comportement asymptotique lorsque r — 0.
Néanmoins, ces poids simplifient beaucoup de nos formules. !°

L’approche décrite dans ce chapitre est basée sur une certaine forme multilinéaire

Lot A" x - x A — C[hTY,

ou A* est 'algebre des fonctions symétriques décalées (voir 'exemple A.17). Cette forme est
telle que
(29 +n —2)!
(fart1l NSt = Ml(Hl(ﬁ))W +o
ou les f; sont des fonctions de la définition 4.22 et les points représentent les termes de degré
inférieur en h=!. Le calcul de cette forme sera basé sur les étapes suivantes :

1. On écrit les fonctions f; en termes des fonctions py définies par

o0

pe(r) =Y (@i — i+ 1/2)F = (=i + 1/2] + 1= 279)¢(=k),  k=1,2,3,...,

1=0

19. Une autre raison de considérer ces valeurs est le fait que g — Z;O:O q%C4(k) est une forme quasi-modulaire.
En d’autres termes, il s’agit d’un polynéme en les séries d’Eisenstein Gy (q), pour k = 2,4,6. (Voir [7].)
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ou ( est la fonction zéta de Riemann. (Théoreme 5.2.)
2. En utilisant la multilinéarité de (-] ...|-), il suffit de calculer (p,|...|px, )n, qui est de la
forme
(=)

<p’€1""|p“n>h: h29_1 +.” ’

ou les (k) sont des constantes que l'on appelle des cumulants élémentaires. (Théoreme
5.4.)

3. Enfin, on calcule les cumulants (k) en termes des valeurs de la fonction zéta aux entiers
positives paires. (Théoréme 5.5.)

Le fait que ((2k) soit toujours un multiple rationnel de 7%* impliquera alors le résultat
conjecturé a la fin du troisieme chapitre.

5.2 CALCUL DU VOLUME DE H;(3,1)

A titre d’exemple de cette méthode, on va calculer le volume de Teichmiiller de la strate
H(3,1). Comme on l'a décrit, la premiere étape consiste a écrire fy et fy en fonction des py, ce
qui est possible grace au théoréeme 5.1 :

1 1
f2—§P27 f4—1p4—p2p1+"',
ol, comme toujours, les points représentent des termes de « poids » inférieur qui ne contribuent
en rien au résultat. Ces « poids » constituent une filtration sur A* avec la propriété que (-| ... |)p

les envoient vers la filtration naturelle de C[h™!] par degré, ce qui nous permet d’identifier
beaucoup de termes négligeables. Par multilinéarité il suffit donc de calculer

(palp2)n et (p2p1[p2)n-
Le théoreme 5.4 implique alors que

(Fulfahn = gloulpa) = Slpamlpahn + - = S (4,2) = (2N 1) — (N2 2) 4+

Enfin, le théoreme 5.5 nous permet de calculer les cumulants élémentaires en termes de la
fonction zéta :

T
(1) = X (2)=0
416 16
4,2y = —7b 2.2) = —x°
ce qui nous donne
/128 N\ 1
Galddn = (Gm) 7+
On obtient ainsi le volume voulu :
6! 128 16
3,1))= = —7° 3,1)) = 6,

C’est exactement la valeur décrite a la fin du troisieme chapitre.
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5.3 LE TERME DE POIDS MAXIMUM DE f,,

Cette section est consacrée a un résultat tres utile qui nous permet d’expliciter les termes de
fm dont on aura besoin pour calculer le terme le plus important de 'expression (f, | -+ | fiua )0
en utilisant sa multilinéarité. Tout d’abord, on définit une nouvelle filtration de A* en attribuant
un poids k + 1 au élément
pe(N) =3 [N =i+ 1/2)F = (=i +1/2)F| + A =27)¢(=k),  k=1,23,....

=1

Ces fonctions constituent une base de A* sur laquelle on veux écrire les f,,. On note que cette
filtration n’est pas la méme que la filtration obtenue a la limite projective.

On rappelle que 'algebre A* est une limite projective des algebres A; de fonctions symé-
triques décalées a ¢ variables. En d’autres termes, l'algebre A; est constituée des polynomes
symétriques en

E=N—i, =1L

La filtration hérité par A’ est la méme que 'on peut obtenir en attribuant des poids k£ + 1
aux polynomes
Pei=.&, k=123,
i=1
qui forment une base naturelle de A¥ (comme vu dans 'exemple A.17)
On considere des partitions A = (A, -+, A,) (définition 4.13). Comme définie dans I’énoncé

du théoreme 4.36, i; sera le nombre de fois que j apparait dans A\. On note alors 1! = [];cn ;!
Enfin, on définit I’élément m) € A} par

my = Z Héc)r\zz)
oeSy i=1

Avant d’énoncer et démontrer le principal théoreme de cette section, la notion de poids
d’une partition sera définie, ainsi qu'un lemme que 'on peut obtenir sans trop d’efforts.

Définition 5.1 Soit A une partition de longueur n. Alors le poids associé a A\ est
wt(A) = [A|+n=MA+...+ X\, +n.

Egalement, wt()) est le poids de py := [T7, pa,-

Lemme 5.1 Soit A = (Aq,...,\,) une partition de longueur n et i; le nombre des fois que j
apparait dans A. Alors

oy ::H@VZ“WA‘{‘"',
j=1

ou les points signifient des termes de poids plus petit.
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Démonstration. Par définition,

Dy = H <Z & )
i=1

Comme chaque mondme a le méme degré, il faut juste extraire ceux qui ont la quantité la

plus grande des variables différentes, c’est-a-dire les termes de la forme ]} ; £ 221) Pour chaque

J € N, on peut avoir 7;! permutations des variables sans changer la valeur du mondéme, de facon
que chaque terme de la forme désirée apparait [[;cn ;! = ! fois. Le résultat suit. O

Finalement, on a le théoreme suivant :

Théoréeme 5.2 La fonction f,, peut étre écrite comme :

1 (_m)nfl
m wt(A)=m+1 &
ou la somme est sur tous les partitions A = (\y, ..., \,) de poids m+ 1 et les points signifient

des termes de poids plus petit.

Démonstration. On rappelle d’abord la formule que I'on a obtenu dans I'exemple 4.29 :

VSl oete)

s:l Jj#s

Comme f,, est symétrique par rapport aux variables ¢;, on peut supposer® que i < j
implique |&;| > [&;| et faire 'expansion en série géométrique, en trouvant :

fm:

1 5 | s—1 n 00 gd
il 1+mz ) 11 <l—mzj )
m s=1 <§ - m) = ( d+1 Jj=s+1 d=0 §g+1

Etant donné une partition A telle que wt(\) = m + 1, on s’intéresse & calculer le coefficient
de ﬁ‘l x f? ¢ dans I'expression ci-dessus.

On s’apercoit que 'unique terme de la somme qui nous donne des puissances positives de &
est celui correspondant a s = 1, et que les monémes de poids maximal viennent de ’expansion

de , .
fifng )

d+1
=5 =0 &

Le coefficient de &V --- &M dans cette expression est (—m)™~! (car on a besoin du terme
A
;;ﬁ pour chaque 7 = 2,...,n). En considérant que P, et p, ont le méme terme de poids

1
maximal, lorsqu’on permute les \; on retrouve i!7m,. Par le lemme 5.1, le résultat suit. O]

20. Apres on permutera les variables, de facon que cette supposition est sans perte de généralité.
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m Exemple 5.1 On va calculer les termes de poids maximum de f5 et f;. Il n'y a qu’une seule
partition telle que wt(\) = 3, a savoir A = (2). Do,

1
Pareillement, il y a deux partitions A = (2,1) et (4) de poids égal a 5. Ainsi,
1 1
Ji= 1(]74 + (=4)pap1) + -0 = qPa— PPt
||
5.4 LA FORME MULTILINEAIRE
Dans cette section, on étudiera la forme multilinéaire (|...[-), décrite au début de ce

chapitre et on développera une méthode systématique pour la calculer sur la base des p. Pour
cela, il faut d’abord comprendre la notation habituelle utilisée pour décrire les partitions d’un
ensemble. (Ne pas confondre avec les partitions d’un entier!)

Rappelons qu'une partition o d'un ensemble S est une présentation de S sous la forme d'une
union disjointe non ordonnée de sous-ensembles non vides

S:OQHOQH"-H(U,

appelés blocs de . Le nombre ¢ = {(«a) est la longueur de la partition a. On note I1,, ’ensemble
de toutes les partitions de {1,...,n}.

Etant donné deux partitions a et 3, on note a3 la jointure de o et 3, qui est la partition
la plus fine qui est plus grossiere que « et 5. Par exemple, si

o= {12} I 3}I1{4} et §={1}11{2,3}11{4},
alors a VvV 8 = {1,2,3} I1 {4}. On dit que «, 5 € II,, sont transversaux et on note o L 3 si
Ua)+L(B) —laV B) =n.

Par exemple, dans le cas ci-dessus, a et 3 sont transversaux. Pareillement, on dit que «, 8 € 11,
sont complémentaires et on note a’T 3 si a, 3 sont transversaux et oV 5= {1,...,n}.
Enfin et surtout, on définit la forme (-|...|)s.
Définition 5.2 Pour tout F' € A*, on définit la forme linéaire

o0

(= [T - ) S F)

n=1

Plus généralement, pour s € N, on définit la forme multilinéaire suivante sur (A*)*® :
(o)
(FIF] . 1Fb = 3 (=) 0) - DT (TTF) -

Finalement, on fait ¢ = e~" et on dénote par (-|...|-), le polynome en h~! qui fait partie du
développement asymptotique de (-|...[-), lorsque ¢ — 1.
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L’importance de cette définition découle de la proposition ci-dessous.

Proposition 5.3 Soit x une partition de 2g — 2. Alors,

2 —2)!
<j%1+1|"'|fkn+1>h ::Lh(7{1(ﬁ))(géz;1n_l)4_...’

ou les fr sont des fonctions de la définition 4.22.

Par la section précédente et cette proposition, tout ce qu’il faut pour calculer les volumes
de Teichmiiller est de pouvoir calculer la forme multilinéaire sur des produits des p. En fait,
comme on le verra maintenant, tout ce que l'on a besoin de savoir, c¢’est comment calculer
(Pmy| - - - |Pm,, yn pour un multi-indice m = (myq, ..., my,).

Définition 5.3 — Les cumulants élémentaires. On appelle les coefficients (m) = (my,...,m,)
dans 'expansion
{m)

<Zhn1|"'|1%nn>h,:: flml+1 + -

les cumulants élémentaires.

Etant donné un multi-indice m = (my, ..., m,) et une partition p € I, de longueur £ = ¢(p),
on écrit

|ppm = < Hpmz

1EP1

Hpmi>h-

1epe

Le prochain théoreme nous permet de calculer les (|, p,), en fonction des cumulants élé-
mentaires.

Théoréme 5.4 Soit m = (my, ..., m,) un multi-indice et p € II,, une partition de longueur /.
Alors,
£(a)
<’ppm> |m| fn+1 Z H mak oo
aTpk=1
ol My, = {m; | i € ay}.

m Exemple 5.2 On utilise ce théoreme pour calculer (p,|p,)n, ot p = (p1,...,pn) et v =
(1, ..., Vm). Dans ce cas,

p=ALl....n}O{n+1,....n+m}

et donc ¢ = 2. D’ou,

ulpn = e oG TTmed TTA) + -+
0 ki I£]
Particulivrement, (papilpa) = h-7((2)2 1) + (112, 2)). .
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5.5 LES CUMULANTS ELEMENTAIRES

Dans les deux dernieres sections, on a réduit le probleme du calcul des volumes de Teichmiil-
ler au calcul des cumulants élémentaires. On aborde maintenant ce dernier probleme. Pour cela,
on utilise la variante suivante de la fonction zéta :

3(k) = {(2 =22 H)C(k) sk est paire

0 sinon

Cette variante correspond exactement aux coefficients de la série entiere de mx/ sin(rz) :

T s
= Zg(k)xk
k=0

sin(rz) &

Le prochain théoreme fournit une méthode pour calculer les cumulants élémentaires.

Théoréme 5.5 Pour tout multi-indice m = (myq, ..., my,),

o)
(m) = 5 (1 @0(@) =2 S gy TT el (] ~ ol =i +1),

a€ll,

ol |[Ma,| = Yica, Mi €t la somme est sur tous les £(a)-uplets
d=(di,...,dya))
d’entiers non négatifs tels que Y- dy = f(a) — 2 et

dp =1+ |ma,| — || mod 2

pour tout k =1,...,¢(a). Le terme o = {1,...,n} doit étre compris comme |m|!3(|m|—n+2).

m Exemple 5.3 D’abord, il est clair que (k)) = k! 3(k + 1) pour tout entier k. Ensuite on calcule
(k,1) pour des entiers k et . Dans ce cas,

Iy = {{1, 2}, {1} T {2}}

et donc
k!
(k1) = (k+ D3k +1) = > —= 3k — di)3(1 = do)
- d!
=(k+D'3k+1)— Kk 1 3(k)3(0),
ou la somme n’a que le terme d = (0, 0). n

Comme on ’a vu, les volumes de Teichmiiller sont écrits sous forme de sommes et de produits
des nombres rationnels et des cumulants élémentaires qui, selon le théoréme 5.5, sont écrits en
fonction de la fonction zéta modifiée 3. Puisque 3(k)/7* est toujours un nombre rationnel, on
obtient la conjecture du fin du troisieme chapitre !
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Théoréeme 5.6 Les volumes de Teichmiiller sont toujours des multiples rationnels de 729. En
d’autres termes,

pr(Hi(Ke, ..., k)7~ % € Q,
ol K1+ -+ Kk, =29 — 2.
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PRELIMINAIRES ALGEBRIQUES

A.1 CATEGORIES

La théorie des catégories fournit un langage qui impregne une grande partie des mathéma-
tiques modernes. Cela nous permet, d’un c6té, d’unifier résultats apparaissant dans différents
contextes et, d’autre part, de changer la focalisation des objets sur les applications entre eux,
ce qui s’est avéré une approche tres fructueuse.

Une catégorie consiste essentiellement en une collection d’objets et de morphismes entre ces
objets, qui satisfont certaines conditions naturelles.

Définition A.1 — Catégorie. Une catégorie C consiste en une classe d’objets Ob(C) et, pour
chaque pair d’objets A, B € Ob(C), une classe de morphismes Homc(A4, B) tels que :

1. pour chaque objet A € Ob(C) il existe un morphisme idy € Homc(A, A), appelé
identité de A;
2. pour chaque pair f € Homc(A, B) et g € Homc(B, C), il existe un morphisme go f €
Homc (A, C) appelé composée de f et g;
3. la composition est associative : pour tous f € Homc(A, B), g € Hom¢(B,C) et h €
Home(C, D),
(hog)of=ho(gof)

4. les identités sont des éléments neutres de la composition : pour tout morphisme f €
Homc (A, B),
idpof = foidy.

Notez que l'on s’est abstenu de dire que Ob(C) et Homc (A, B) sont des ensembles. En
pratique, ces classes sont souvent trop grandes pour étre des ensembles. Cependant,
cela ne posera aucun probleme dans notre étude.

Si la catégorie est implicite dans le contexte, nous omettrons I'index C et écrirons simplement
Hom(A, B). Dans ce cas, il sera également habituel d’écrire f : A — B de maniére analogue
aux applications entre ensembles.

Un morphisme d’un objet A € Ob(C) dans lui-méme s’appelle un endomorphisme. On écrit
Endc(A) pour Home(A, A). Observons que si f, g € Ende(A), alors f o g l'est aussi.

m Exemple A.1 — Catégories concrétes. Bien entendu, ’exemple type d’une catégorie est consti-
tué d’ensembles et de fonctions entre ensembles. La catégorie Set, o Ob(Set) est la classe de
tous les ensembles et Homge (A4, B) = BA.

Plusieurs catégories importantes sont formées a partir de structures algébriques. C’est le
cas de Grp, la catégorie des groupes, Ring, la catégorie des anneaux et k-Vect, la catégorie des
espaces vectoriels sur un corps k. n
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» Exemple A.2 — « Slice category ». Etudions maintenant une catégorie trés utile dont les
objets ne sont pas des ensembles « avec une structure algébrique ». Soit C une catégorie et A
un objet de C. On va définir une catégorie C | A dont les objets sont des morphismes dans C
d’un objet quelconque a A. C’est-a-dire que

Ob(Cl A):= [J Homc(Z, A).

Ze0b(C)

Etant donné cette classe d’objets, il n'y a qu’une seule manicre raisonnable de définir les
morphismes entre deux objets : si fi, f sont des objets de C | A

4 Zo
fl‘ ‘fQ
A A

alors des morphismes f; — f» sont précisément des diagrammes commutatifs 2!

Zl—>ZQ

dans C. En d’autres termes,

Homea(fi1, f2) := {p € Home(Z1, Z2) | f1 = fa0 ¢}

Vérifions que C | A est en fait une catégorie : si f: Z — A est un objet de C | A, 'identité
idy n’est rien d’autre que 'identité de Z. La commutativité du diagramme

idyz
L — 7
N /
A
découle du fait que C est une catégorie. La composition en C | A provient également de la
composition en C :

Al Lo 73
N lh f3
A

21. Un diagramme commutatif est un diagramme tel que tous les chemins dirigés dans le diagramme avec les
mémes points de départ et d’arrivée aboutissent au méme résultat.

100
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il suffit de mettre les diagrammes cote a cote! La composition est bien définie parce que le
diagramme obtenu en supprimant la fleche centrale

commute également. Le fait que la composition soit associative et possede des identités en tant
qu’éléments neutres découle de maniere analogue. "

m Exemple A.3 — « Coslice category ». En inversant toutes les fleches en C | A, on obtient une
nouvelle catégorie A | C, définie par

Ob(A | C):=0b(C| A)
et pour tous fi, fo € Ob(A | C),

Homayc(f1, f2) :== Homea(f2, f1).

C’est-a-dire que les morphismes entre deux objets f; et fo de A | C sont des diagrammes

commutatives
A
Y/ N
©

Zy ———— Ly

dans C. Ceci est un exemple d’une construction plus générale : étant donné une catégorie C,
on définit la catégorie opposée C°P ou

Ob(C°?) := Ob(C)
et pour tous A, B € Ob(C),
Homeor (A, B) := Home(B, A).

Dans notre cas, A | C a été définie comme la catégorie opposée a C | A. Le préfixe « co- »
indique généralement que 1’on inverse toutes les fleches. m

Etant donné que la théorie des catégories met davantage 'accent sur les morphismes que
sur les objets, on peut se demander s’il existe des notions analogues a l'injection, a la surjection
et a la bijection qui fonctionnent avec les morphismes généraux. La proposition suivante, bien
connue, répond a cette question.
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Proposition A.1 Soient A, B des ensembles avec A # & et soit f : A — B une application.
Alors,

1. f a un inverse a gauche si et seulement si elle est injective;

2. f a un inverse a droite si et seulement si elle est surjective.

Cette réinterprétation des classifications usuelles d’injectivité et de surjectivité se traduit
comme suit pour les morphismes généraux.

Définition A.2 — Monomorphismes et épimorphismes. Soit C une catégorie. Un morphisme
f € Homc(A, B) est un monomorphisme si pour tout objet Z € Ob(C) et tous morphismes
ag,a € Home(Z, A) -

fOOq:fOOéQ = o1 = Q9.

Pareillement, f € Homc(A, B) est un épimorphisme si pour tout objet Z € Ob(C) et tous
morphismes (31, B2 € Hom¢(B, Z) :

prof=pof = Bi=[o.

Comme d’habitude, il est habituel de décrire ces propriétés a ’aide de diagrammes commu-
tatifs. Un monomorphisme est tel que la commutativité du diagramme

7—=A-1.B

a2

implique a1 = as. De méme, un épimorphisme est tel que la commutativité du diagramme

B1
A%B:;
B2

implique £, = [s.

Certes, dans Set les monomorphismes correspondent précisément aux injections et les épi-
morphismes aux surjections. Cependant, ce n’est pas toujours le cas, comme l'illustre I’exemple
suivant.

m Exemple A.4 Dans Ring, un (homo)morphisme surjectif est certainement un épimorphisme
(puisqu’il s’agit d’'un épimorphisme dans Set). Cependant, considérons 'inclusion d’anneaux
suivante :

L7 — Q.

Jaffirme que méme sans étre une surjection, ¢ est un épimorphisme d’anneaux. En fait, si 5
et [y sont tels que le diagramme

B1
Z ——- Q —R
B2

commute, 31|z = Pa|z. Alors, pour p,q € Z avec q # 0,

5, (g) — BB 0) ™ = B)Ba(a) = o (g’) |

On conclut que ¢ est un épimorphisme. n
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Comme on a vu dans la proposition A.1, une application est bijective si et seulement si elle
a un inverse a gauche et un inverse a droite. Dans ce cas, les deux inverses sont égaux. Cette
notion se situe bien dans le contexte catégorique.

Définition A.3 — Isomorphisme. Soit C une catégorie. Un morphisme f € Homc(A, B) est
un isomorphisme s’il existe g € Home(B, A) tel que

gof=idy et fog=idg.

Dans ce cas, on dit que g est le morphisme inverse de f et on note g = f~!. S’il existe

un isomorphisme entre deux objets A et B, on dit que A et B sont isomorphes et on note
A= B.

Ainsi que 'on pouvait s’y attendre, I'inverse d’un isomorphisme est unique.

Proposition A.2 Soit C une catégorie et f € Homc(A, B) un isomorphisme. Alors, f admet
un unique morphisme inverse.

Démonstration. Soient g, go € Hom¢(B, A) deux inverses de f. Alors,

gi=gqroidg=g10(fogs) =(g10f)ogs=idaogs = go.
Ceci conclut la démonstration. O

Notez que c’est exactement le méme argument que celui utilisé pour prouver que si une
application entre ensembles a un inverse a gauche et un inverse a droite, alors elle a un inverse
unique et est une bijection. De plus, bien siir, les isomorphismes dans Set sont précisément les
bijections.

Définition A.4 — Automorphisme. Soit C une catégorie et A un objet de C. Alors, un auto-
morphisme de A est un isomorphisme de A sur lui-méme. L’ensemble des automorphismes
est noté Autc(A).

Comme on peut le constater, ’ensemble des automorphismes avec I'opération de composition
forme un groupe.

A.2 OBJETS TERMINAUX ET PROBLEMES UNIVERSELS

Plusieurs concepts dans ce rapport auront deux descriptions : une construction explicite et
une description de l'objet en tant que solution d'un « probléme universel ». Habituellement,
cette derniere description clarifie de nombreux aspects et met en évidence la motivation derriere
la définition.

Pour comprendre ce qu’est un probleme universel, on commence par définir quelques objets
« distingués » qui existent dans certaines catégories.
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Définition A.5 — Objets terminaux. Soit C une catégorie. Un objet I € Ob(C) est initial si
pour tout objet A € Ob(C),

Home(1, A) est un singleton.
Pareillement, un objet F' € Ob(C) est final si pour tout objet A € Ob(C),
Home (A, F) est un singleton.

On utilise terminal pour indiquer I'une de ces possibilités.

m Exemple A.5 — Objets terminaux dans Set. Un ensemble [ est initial dans Set si pour tout
ensemble A, il existe une unique application f : I — A. Ce n’est le cas que si I = @.

La catégorie Set a aussi des objets finaux : si ' = {s} est un singleton, pour chaque
ensemble A, il existe une unique application f : A — F. L’application constante définie par
f(a) = s pour tout a € A. On conclut que tout singleton est final dans Set. .

m Exemple A.6 — Objets terminaux dans Ring. L’anneau des entiers Z est initial dans Ring. En
fait, pour tout anneau R il existe un unique homomorphisme d’anneaux ¢ : Z — R déterminé
par les conditions

p(1) =1 et pla+b) =p(a)+p(b).
Ce morphisme est donné par ¢(n) =n - 1x. .

Enoncons une propriété fondamentale qui sera utilisée sans arrét au long de ce rapport.
C’est précisément cette propriété qui garantira que les solutions aux problémes universels, si
elles existent, sont uniques a isomorphisme pres.

Proposition A.3 Soit C une catégorie. Alors si I; et I sont initiaux dans C, il existe un
unique isomorphisme dans Homc(/1, I3). De méme, si F; et F3 sont finaux dans C, il existe
un unique isomorphisme dans Home (F}, F3).

Démonstration. On va prouver I’énoncé sur les objets initiaux. L’énoncé sur les objets finaux
est analogue.

Comme I et I, sont initiaux, il existe un unique morphisme f : I; — I et un unique
morphisme g : I, — I;. Considérons go f : Iy — I;. Comme [; est initial, il existe un unique
morphisme dans Home(/y, [;) : le morphisme identité id;,. On conclut que

go f = idh :
Pareillement, on peut conclure que f o g =idy,. Le résultat s’en suit. O

La proposition A.3 illustre bien le fait que méme si les objets finaux de Set ne sont pas
uniques, ils sont tous isomorphes.

s Exemple A.7 Considérons une variante (trés utile) de la catégorie de I'exemple A.3. Etant
donné un ensemble A et une catégorie C donc les objets sont des ensembles (avec peut-étre plus
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de structure), on définit une catégorie C4 ou les objets sont des paires (j, R) avec R € Ob(C)
et j € Homge(A, R). Un morphisme (j;, Ry) — (jo, R2) dans Cy4 est un diagramme commutatif

A
%)

Ry —— Ry

ou ¢ : Ry — Ry est un morphisme dans C (pas dans Set!).

Cette construction apparalt couramment dans l’algebre moderne. On donne un exemple
classique.

Soit C = Grp. Le composant de groupe d’un objet initial dans Grp, s’appelle le groupe
libre F'(A). La proposition A.3 dit que si un objet initial existe, il est unique & isomorphisme
pres. Cela justifie le fait que 'on ait appelé F/(A) le groupe libre.

On peut réécrire le fait que F(A) est un objet initial de la maniere suivante : F(A) est
le groupe libre sur I'ensemble A s’il existe une application j : A — F(A) telle que pour tout
groupe G et pour toute application f: A — G il existe un unique homomorphisme de groupes

¢ : F(A) — G tel que le diagramme
A
F(A) —— G

commute. Cette description de F'(A) est un exemple de probléeme universel.

La prochaine étape consiste a montrer qu’il existe un groupe satisfaisant la propriété de
F(A). Cette construction (et son analogue dans la catégorie Ab des groupes abéliens) est assez
belle mais échappe a la portée de cet exemple. Le lecteur peut le voir dans [1]. "

La notion de « probléme universel » peut étre comprise de plusieurs manieres équivalentes.
Puisque le contexte le plus naturel est trop lourd pour nos besoins, on se contente donc dune
définition pratique et de nombreux exemples.

Définition A.6 — Probléme universel. On dit qu'un objet est la solution d’un probléme uni-
versel lorsqu’il s’agit d’un objet terminal d'une catégorie. Habituellement, cette catégorie
sera I'une des catégories C | A ou A | C, définies dans les exemples A.2 et A.3, ou une
variante simple, comme dans le cas de I'exemple A.7.

En raison de la proposition A.3, la procédure a suivre sera toujours la méme : on définit
un objet en termes de probleme universel et on montre qu'un tel probleme admet une solution
explicite. Des lors, la propriété universelle nous donnera toutes les informations dont on a besoin
sur cet objet.

Prenons quelques exemples !
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m Exemple A.8 — Quotients. Soit ~ une relation d’équivalence et A un ensemble.
Que peut-on atteindre du quotient A/ ~7 D’abord, il faut que I'on ait une maniere de voir
A dans A/ ~. C'est-a-dire que 'on veut une application

T A— A ~.

Aussi, pour traduire I'idée que des éléments équivalents deviennent égaux dans le quotient, si
a ~ b sont des éléments équivalents dans A, on doit avoir m(a) = 7(b). En fait, on a méme plus
que ¢a : si ¢ : A — Z est une application telle que a ~ b implique p(a) = p(b), il doit exister
une unique application @ : A/ ~— Z telle que le diagramme

commute. Ce probléme universel détermine A/ ~ & isomorphisme pres. Dans ce cas, la condition
est que 7 soit un objet initial d'une catégorie similaire & A | Set, ou on ne consideére que des
morphismes satisfaisants une condition spéciale. Voyons comment la construction habituelle du
quotient résout ce probléme universel : si ¢ : A — Z est telle que a ~ b implique p(a) = ¢(b),
la commutativité du diagramme implique que

C’est-a-dire que, si @ est, en fait, une application, elle est unique et définie par ’équation
ci-dessus. Néanmoins, par définition de ¢,

[a] = [b] = a~b = ¢(a) = (D).

Ce qui implique que P est bien définie. Bien entendu, la construction catégorique de quotients
de structures algébriques (ou méme d’espaces topologiques) est analogue. ]

Les catégories C | A et A | C nous ont aidés a décrire catégoriquement les objets définis
a partir d’'un objet A € Ob(C). Pour étudier des produits (et coproduits), il faut définir une
catégorie similaire prenant en compte deux objets A et B.

Soit C une catégorie et A, B des objets de C. On définit la catégorie C4 p, ou les objets sont
des diagrammes

106



OBJETS TERMINAUX ET PROBLEMES UNIVERSELS

dans C et un morphisme

1 A fa A
, / L, /
. .

Plus formellement, on a
Ob(Cap) :={(f,9,Z) € Home(Z, A) x Homc(Z, A) x Ob(C)}
et

Homc, ,((f1,91, 21), (f2, 92, Z2)) == {0 € Homc(Z1,Z5) | fr = fao 0o et g1 = g2 00}

m Exemple A.9 — Produits. Le produit entre deux objets A et B d’une catégorie C est la
troisieme composante d'un objet final de la catégorie C4 5. Voyons comment cela fonctionne
dans le cas C = Set. Considérons le produit cartésien A x B avec ses deux projections naturelles.

Pour montrer que A x B est le produit catégorique, on doit prouver que pour chaque diagramme

A

y’

Z

T

B
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il existe une unique application o : Z — A x B telle que le diagramme

fa A
y
7 —"— AxB
w\B}B

commute. Définissons donc

o7 — AxB
2z (fa(2), [8(2))-

Pour définition, f4 =74 00 et fg = mp o 0. Le résultat suit.

Le produit direct des groupes et les produits habituels des anneaux et des espaces vecto-
riels sont tous des produits catégoriques. De plus, le produit catégorique entre deux espaces
topologiques porte la topologie produit. n

Comme le préfixe I'indique déja, pour étudier les coproduits, on va inverser toutes les fleches
dans C4 p et examiner la catégorie C*P dont les objets sont des diagrammes

A f
\ ,
e
B
et les morphismes
A &) A K‘
Z1 — Zo
& &

Voyons comment on peut utiliser cela pour construire le coproduit.
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» Exemple A.10 — Coproduits. Le coproduit entre deux objets A et B d’une catégorie C est (la
troisiéme composante d’un objet initial de la catégorie CZ. La catégorie Set a un coproduit :
I'union disjointe. Considérons 'union disjointe entre A et B définie par

AHB = ({0} x A)U ({1} x B).
Cet ensemble est doté d’inclusions canoniques

LAZA—>AHB et LB:B—>AHB
a— (0,a) b (1,0).
On doit montrer donc que pour tout diagramme
A K
Z
e

B

il existe une unique application o : A][ B — Z telle que le diagramme

A fa
LA
\A]_[B—‘—T—>Z
Lo

I

commute. Comme d’habitude, la commutativité du diagramme force la définition du morphisme
o, donnée par

f(b) sic=(1,b) {1} x B’

Contrairement aux produits, les coproduits catégoriques peuvent étre tres différents d’une
union disjointe. Par exemple, le coproduit des groupes abéliens et des espaces vectoriels est
donné par la somme directe. Le coproduit dans la catégorie Grp est donné par une construction
analogue a I'exemple A.7 et est appelé produit libre. m

o(c) = {fA(a) sic=(0,a) € {0} x A

Dans les espaces vectoriels (et les groupes abéliens), le produit cartésien et la somme directe
satisfont aux conditions du produit et du coproduit catégorique en méme temps. C’est une
explication du fait que, pour les familles finies d’espaces vectoriels, le produit cartésien et la
somme directe sont isomorphes. Ceci est un phénomene général qui se passe avec des catégories
étonnamment bien comportés : les catégories « abéliennes ».
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A.3 LIMITE PROJECTIVE

Les limites projectives, en théorie des catégories, sont des constructions similaires aux sé-
quences de Cauchy, en analyse, ou on utilise des approximations toujours meilleures de notre
« objet idéal ». Tout comme on peut utiliser une suite de Cauchy de nombres rationnels pour
représenter un nombre réel, on utilisera des séquences pour décrire les objets-limites que 1'on
obtiendra.

Définition A.7 — Systéme projectif. Soit (/, <) un ensemble ordonné et C une catégorie. Un
systéme projectif d’objets de C indexé par I est la donnée d’une famille (A;);c; d’objets de
C et de morphismes f/ € Homc(A;, 4;) pour tout i < j € I tels que

— Pour tout i € I, f} =idy, ;
— Pour tous 4,7,k € I tels que i < j <k, f/ o fF = fk.

Presque toujours notre ensemble ordonné sera I’ensemble des entiers positifs. Dans ce cas,
le choix d’un systéme projectif est le choix d’un diagramme

dans C. Notez que tous les morphismes non représentés sont implicites par la définition du
systeme projectif.

Définition A.8 — Limite projective. Etant donné un systéme projectif (A, fij ) dans une ca-
tégorie C, une limite projective des A; suivant les morphismes fz] est un pair (A, m;) ou A
est un objet de C et m; € Homc(A, A;) sont des morphismes tels que m; = f/ o m; pour
tous i < j. De plus, il faut que pour tout autre pair (B,;), ou B est un objet de C et
Y; € Home (B, A;), il existe un unique morphisme v € Home(B, A) tel que le diagramme

soit commutatif pour tous ¢ < j. Comme toujours, lorsqu’elle existe, la limite projective est
unique a isomorphisme pres. On la note A = l&n A;.

En pratique, ou on utilisera I = N, la limite inverse est un objet A, doté des morphismes
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m; tels que le diagramme

A
US|
.7 3 12
— : ! 5 73
Ay As Ay Ay

commute et cette condition doit étre universelle, au sens donné par la définition ci-dessus.

m Exemple A.11 — Limite projective d’ensembles. Dans la catégorie Set, on peut toujours
explicitement écrire la limite projective

@Az‘ = {(ai)iel € HAi a; = fy;j(aj) pour tous i < j} :

iel
Dans ce cas, les projections 7; sont les projections canoniques données par le produit. La limite
projective fonctionne exactement de la méme maniere dans toutes les catégories qui ont des
produits, telles que Grp, Ab, Ring, k-Vect, etc. Une exception notable est le cas de la catégorie
des corps, ou le produit de deux corps n’est pas nécessairement un corps. n

L’exemple ci-dessous, donné par [2], n’est pas nécessaire pour la suite de notre étude mais
illustre merveilleusement bien ce qu’est une limite projective.

m Exemple A.12 — L’anneau des entiers p-adiques. Supposons que 1'on veuille résoudre 1I’équation
2241 = 0 dans Z. Certes, cette équation n’a pas de solution, mais ignorons ce fait pour I'instant.
On peut observer que cette équation a deux solutions dans Z/5Z qui, a signe pres, sont
égales. Cherchons donc une solution que satisfait x = 2 (mod 5).
Puisque x satisfait x = 5y + 2, on remplace ceci dans notre équation pour obtenir

(by +2)?=—-1 = 25y +20y = -5 = 20y =—5 (mod 25) = 4y=—1 (mod 5).
Cette derniere équation a l'unique solution y =1 (mod 5). D’ou on voit que
r=5y+2=5-14+2=7 (mod 25).

On peut montrer que ce processus peut étre étendu indéfiniment (lemme de Hensel), en trouvant
ainsi une séquence de résidus (zj)r>1 € Z/5Z qui résolvent notre équation dans I'anneau dans
lequel ils vivent. Ces résidus sont cohérents en ce sens que si fy : Z/5*"'Z — Z/5*Z est
I'application associant au résidu de n (mod 5*!) le résidu de n (mod 5%)

LN AR LN Y RN ).y LN Y/

)

alors fy(zx+1) = x. On a ainsi construit un anneau Zs := I&HZ/ 5%7, qui contient une copie
isomorphe de Z, ou 1'équation 22 + 1 = 0 a une solution. "
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A.4 PRODUIT TENSORIEL

Soit E, F' des espaces vectoriels sur un corps commutatif k. Notre motivation derriere la
définition du produit tensoriel est la volonté de traiter des fonctions bilinéaires « comme si »
elles étaient linéaires. Autrement dit, nous voulons un nouvel k-espace vectoriel £ ®; F et une
fonction bilinéaire 7 telle que pour tout espace vectoriel G, et pour toute application bilinéaire
¢ de F x F dans G, il existe une unique application linéaire ¥ de E ®; F' dans G telle que le
diagramme ci-dessous commute.

ExF——@

A1
.

.

.

T L4
%
l i

.

E®i F

En d’autres termes, telle que ¢ = @ o 7. On écrit alors 'élément 7(z,y) de E ®; F' comme
x ®y. Comme on a vu, l'espace E ®; F' (ou, plus formellement, le morphisme 7) est solution
d’un probléme universel et donc, s’il existe, est unique a moins d’un isomorphisme. Alors, il
faut construire le produit tensoriel.

Théoreme A.4 Le produit tensoriel existe.

Démonstration. Soit {e; : i € I} une base de E et {f; : j € J} une base de F. Pour chaque
pair (e;, f;) on définit un symbole purement formel e; ® f; et on définit I'espace vectoriel E ®y, F
comme l'espace engendré par les vecteurs linéairement indépendants e; ® f;.
Puisque 7 doit étre bilinéaire, 7 est déterminée par ses valeurs en (e;, f;). Ensuite, on définit
7 comme étant 'unique fonction bilinéaire telle que 7(e;, f;) = e; ® f; pour tout i € I, j € J.
Enfin, si ¢ : E X F' — G est une fonction bilineaire quelconque, on définit ¥ comme 'unique
application linéaire telle que B(e; ® f;) = @(e;, f;) pour tout i € I, j € J. ]

Notez que, bien que E @y F soit engendré par {e @ f € EQ, F :e€ E,f € F}, cet
ensemble n’est pas linéairement indépendant.

Corollaire A.5 Si I/ et F' sont a dimension finie,

dim(E @y F) = dim(F) dim(F).

Théoréme A.6 Soient E, F, G espaces vectoriels sur un corps k. Alors,
Hom(E, F;G) = L(E ® F,G),

ou Hom(E, F; G) est I’espace vectoriel des applications bilinéaires Ex F' — G et L(E®y F, Q)
est ’espace vectoriel des applications linéaires F @ F' — G.
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Démonstration. La propriété définissant le produit tensoriel implique que pour chaque ¢ €
Hom(FE, F'; G) il existe une unique application p € L(E® F, Q) telle que ¢ = por. C'est-a-dire,
il existe une fonction

A :Hom(E, F;G) - L(E®y F,G)

¥ = P-

En fait, A est elle-méme lineaire parce que si @1, po € Hom(E, F';G) on a

[rA(p1) + sA(@2)](z @ y) = 1P1(2,y) + s@a(x,y) = [re1 + swa)(2, ).

Si f e L(E®,F,G), on voit que A(f o7) = f, ce qui implique que A est une surjection.
Enfin, si A(¢) =0 on a ¢ = A(p) o7 =0, ce qui implique que A est une injection. [

On énonce sans preuve quelques propriétés simples du produit tensoriel et de ses éléments.

Proposition A.7 Soient F, F,G des k-espaces vectoriels. Alors,
1. EQL FEF QL F,
2. (E@x F)®yG= EQ (FQG).
Aussi, F ®; F est un groupe abélien tel que
3. (T14+22)RY=21Qy+ 220 Y;
4. 2@ +1y) =2y + 7@ y2;
5. c(z®y) = (cx) @y = ® (cy).
pour tout x,z1,x0 € K, y,y1,y2 € F et c € k.

De maniere analogue, on peut définir le produit d’un nombre fini de k-espaces vectoriels.

Définition A.9 Etant donné F,, ..., E,, k-espaces vectoriels, on définit leur produit tensoriel
comme le pair (F; ®y ... ®y E,,, 7), ou 7 est multilinéaire, tel que pour tout espace vectoriel
G, et pour toute application multilinéaire ¢ de Fy x ... x E,, dans G, il existe une unique
application linéaire ® de F; ®y . ..y E,, dans G telle que le diagramme ci-dessous commute.

By X ... X Ep —— G

P
.
.
.
.

T P
RSN
s
.

.

B Q... Q By,

\

ES)

On écrit I'élément 7(z1,...,2,) comme 21 @ ... ® Tpy,.

Comme avant, le produit tensoriel existe et est unique & moins d’un isomorphisme. Le
corollaire A.5, le théoréeme A.6 et la proposition A.7 se généralisent comme attendu.
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A.5 PUISSANCE EXTERIEURE ET SYMETRIQUE

Dans cette section, on étudie deux constructions analogues a celle de la section précédente
en utilisant des classes spéciales d’applications multilinéaires. Pour simplifier la notation, on
définit

E®m :E®k®kE,
m fois
ou E®0 = k.
Définition A.10 Soit ¢ : E™ — G une application multilinéaire. On dit que ¢ est symétrique
si pour tout permutation o € S, et tout x1,...,z, € E,

So(xa(l)u Lo(2)y -+ - wra(m)) - @(Ila Lo, .. 7Im)-
D’autre part, on dit que ¢ est alternée si
o(x1,29,...,2,) =0 lorsque w; =x; pour i # j.

Le lecteur pourrait imaginer que 1'on définirait les applications multilinéaires alternées
comme celles satisfaisant

Qp(ma(l)7 To(2)y - - axo(m)) = (—1)0(,0<.T1, Lo, . .. 7~Tm)>

pour tout permutation o € S, et tout x4, ..., x,, € E. Toutefois, si la caractéristique de k est
2, cette définition coincide avec la définition des applications multilinéaires symétriques. Pour
char(k) # 2, la définition ci-dessus est équivalente a la définition des applications multilinéaires
alternées. C’est-a-dire,

Proposition A.8 Soit ¢ : E™ — G une application multilinéaire. Si ¢ est alternée, alors pour
tout permutation o € 5, et tout x1,..., 2, € E,

O(To(1), To(2), - - - > Tam)) = (—1)7@(21, T2, . . ., Tm).
Si la caractéristique de k£ n’est pas 2, la réciproque est vrai aussi.
Démonstration. Il suffit de considérer le cas m = 2. Comme ¢ est multilinéaire et alternée,
0= (1 + 22,21 + x2) = p(x1, 22) + p(2, 21).

La premiere partie suit. Enfin, si la condition de I’énoncé est satisfait, p(z,z) = —p(z, ).
C’est-a-dire, 2¢(z, ) = 0. Donc, pour char(k) # 2, le résultat suit. ]

Les définitions qui suivent découlent de la volonté de traiter les classes d’applications multi-
linéaires que 1'on vient de définir comme linéaires. Le lecteur doit comprendre que ces construc-
tions sont totalement analogues a la construction du produit tensoriel. Comme auparavant, la
puissance extérieur et la puissance symétrique sont des solutions aux problémes universels et
sont donc uniques a moins d’un isomorphisme.
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Définition A.11 Etant donné un k-espace vectoriel E, on définit ses puissances extérieures
comme le pair (A" E,n), ou n est multilinéaire alternée, tel que pour tout espace vectoriel
GG, et pour toute application multilinéaire alternée ¢ de E™ dans G, il existe une unique
application linéaire © de A™ E dans G telle que le diagramme ci-dessous commute.

pas
.
n e
e
A

N E

N

S

On écrit I'élément n(x1, ..., x,,) comme x1 A ... A Zp,.

Soit W C E®™ le sous-espace engendré par les vecteurs de la forme z; ® ... ® z,, tels que
r; = x; pour i # j. Soit aussi ¢ : E®™ — E®™/W Dapplication canonique. Alors, le pair
(E®™ /W, T o q) satisfait la propriété de la puissance extérieure.

Comme avant, les propriétés de A™ E découlent du fait que n est multilinéaire alternée.

Proposition A.9 Soient E un k-espace vectoriel. Alors, A> E est un groupe abélien tel que
L. (mm+z)ANy=x1 ANy+ 22N y;
2. ANyt yp)=xAy+xAys;
3. c(xNy)=(cx) Ny =2z A(cy);
4. z Nz =0.
pour tout x, z1,x2,y,y1,y2 € E et c € k.

Les propriétés de A™ E, pour m > 2, sont analogues.

Théoreme A.10 Soit E un espace vectoriel a dimension finie. Alors, si dim £ = n,
m n
dim E) = .
(Ne)- (1)

Démonstration. Soit {ej,...,e,} une base de E. On affirme que I’ensemble

B:{eil/\eiQ/\.../\eim:1§i1<i2<...<im§n}

est une base de A" E. Etant donné un vecteur 21 A ... Az, € N* E, on peut écrire chacun des
x; comme une combinaison linéaire des vecteurs de la base. Si un vecteur e; apparait deux fois
dans le produit, le résultat est le vecteur nul et si les e; apparaissent dans le mauvais ordre, on
peut les réorganiser. Il en résulte que B engendre A" F.

Pour montrer que B est linéairement indépendant, on suppose qu’il existe une combinaison
linéaire non triviale d’éléments de B résultant le vecteur nul. Comme aucun élément de B n’est
le vecteur nul, il existe un ¢ tel que certains éléments de cette combinaison linéaire contiennent
le vecteur e; mais pas tous. On prend alors le produit extérieur avec e;. Le résultat est une
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combinaison linéaire non triviale des vecteurs de la base de N1 E qui résulte le vecteur nul.
La preuve se réduit alors au cas n = m, ce qui est trivial. O

Enfin, on définit la puissance symétrique comme prévu.

Définition A.12 Etant donné un k-espace vectoriel E, on définit ses puissances symétriques
comme le pair (Sym™ F,v), ou v est multilinéaire symétrique, tel que pour tout espace
vectoriel G, et pour toute application multilinéaire symétrique ¢ de E™ dans G, il existe une
unique application linéaire @ de Sym™ E dans G telle que le diagramme ci-dessous commute.

2
.
.
.
v ’//Q
‘/ ///>>\
.

Sym™ E
On écrit I'élément v(xq,...,2,,) comme 1 V...V Zpy,.
Soit V € E®™ le sous-espace engendré par les vecteurs de la forme
To) @ ... QToim) =21 Q... & Ty

pour une permutation o € S,,. Soit aussi ¢ : E¥™ — E®™/V Papplication canonique. Alors, le
pair (E®™/V, T o q) satisfait la propriété de la puissance symétrique.
Comme avant, les propriétés de Sym™ E découlent du fait que v est multilinéaire symétrique.

Proposition A.11 Soient F un k-espace vectoriel. Alors, Sym? E est un groupe abélien tel
que

I (x14+x)Vy=21Vy+ a2 Vy;

2. zV(y1+y)=xVy +xVy;

3. c(xVy)=(cx)Vy=2aV (cy);

4. zVy=yVzx.
pour tout x,xy, xo,y,y1,y2 € F et c € k.

Les propriétés de Sym™ E, pour m > 2, sont analogues.

Théoréme A.12 Soit E un espace vectoriel a dimension finie. Alors, si dim E = n,

n+m-—1
dim (Sym™ F) = ( - >
m
Démonstration. Soit {eq,...,e,} une base de E. Cette fois-ci, c’est assez clair que

B:{e“\/ew\/\/ezmlgzlgwg§zm§n}

est une base de Sym™ E. La partie difficile est compter le nombre d’éléments dans cet ensemble.
Heureusement, il existe une astuce merveilleuse qui le rend cela facile. Soit xp = 1311 — ig, ou
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on écrit 19 = 1 et 7,,.1 = n. On observe que
$0+J]1++$m:lm—h:n—1

Chaque solution de I’équation xg+ ...+ z,, = n — 1 en entiers positifs donné lieu a un élément
de la base B. Dong, il suffit de compter le numéro de solutions de cette équation. La stratégie
consiste a considérer m tirets et n — 1 boules. Chaque solution de cette équation est équivalent
a mettre xo boules avant le premier tiret, x; boules avant le deuxieme tiret et ainsi de suite.

xo|xy | x| oo |2

Dongc, le nombre de solutions dans cette équation est égal au nombre de facons d’échanger des
m tirets et n — 1 boules. C’est-a-dire,

(m+n—1!_ <n+m—1>'

ml(n —1)! m

A.6 ALGEBRES SUR UN CORPS COMMUTATIF

Soit k un corps commutatif et considérons k[zy,...,x,], lanneau des polynémes a coeffi-
cients dans k en n indéterminées. Bien que k[xy, ..., z,] soit normalement vu comme un anneau,
il est plus naturellement décrit comme un espace vectoriel sur k, avec une multiplication bili-
néaire. Cette structure algébrique est appelée algebre.

Définition A.13 — Algeébre. Une algébre sur un corps commutatif k£ est un espace vectoriel
(A, 4+, ) sur k avec une multiplication bilineaire x : A x A — A. Un morphisme entre deux
k-algebres A et B est une application linéaire f : A — B telle que

flexy) = [f(z) x f(y)
pour tous z,y € A. Ainsi, on a défini la catégorie k-Alg, des algebres sur k.
On va généralement ignorer la distinction entre X, le produit entre deux vecteurs, et -, le
produit entre un scalaire et un vecteur, désignant les deux par juxtaposition.

m Exemple A.13 Les algebres sur un corps commutatif impregnent les mathématiques. L’en-
semble des nombres complexes, I’ensemble de toutes les matrices avec des coefficients dans un
corps, les quaternions et méme R? avec le produit vectoriel sont des exemples d’algebres. m

m Exemple A.14 Considérons une définition équivalente d’algebre commutative (c’est-a-dire
quand X forme une opération commutative) sur k. On peut dire qu'une algébre commuta-
tive est la donnée d’un anneau commutatif A avec un homomorphisme ¢ : k — A. Dans ce cas
on a une multiplication par scalaire donnée par

kxA— A

(k,a) — p(k)a.
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Pour préserver cette multiplication par scalaire, on dit qu'un morphisme entre deux algebres
commutatives A et B est un morphisme d’anneaux f: A — B tel que

flex) = cf(x)

pour tout ¢ € k et x € A. C’est-a-dire que le diagramme

k
<P:/ \P/B
f

A——B

commute. On réalise que la catégorie des algebres commutatives est la catégorie k£ | CRing, ou

CRing est la catégorie des anneaux commutatives. "
La description de k[z1, ..., x,] en tant que k-algebre est déja plus précise que sa description
en tant qu'anneau. Cependant, on ignore toujours le fait que tout polynéme p € k[z1, ..., x,]
a un entier deg p associé, son degré. Cela motive la définition de ’algebre graduée.
Définition A.14 — Algebre graduée. Soit A une algébre sur un corps commutatif k. Une
graduation sur A est la donnée d’une famille (A4,,),>0 de sous-espaces vectoriels de A vérifiant
o0
A= @ Ay
n=0

et, pour tout n,m € N,
AnAm C Anera

ou A, A,, est défini comme 'algeébre engendré par des produits de vecteurs de A,, et A,,. En
d’autres termes, pour tout n,m € N,

r €A, YyeEA, = TXYEA, in.

L’algebre A est alors dite graducée et les éléments de A, sont dits homogénes de degré n.

Un morphisme f : A — B d’algebres graduées sur le méme corps est un morphisme
d’algebres tel que f(A,) C B, pour tout n. Ainsi, on a défini la catégorie k-GAlg, des
algebres graduées sur k.

On peut certainement écrire k[zy, ..., x,] comme
o0
klzy, ... x0) = P kalz, ... ),
d=0

ou les ky[xq, ..., x,] sont constitués des polyndmes homogenes de degré d. En d’autres termes,
ces polyndémes dont les termes non nuls ont tous le méme degré d.

Les constructions que I'on a vu dans les sections précédentes forment également, de maniere
naturelle, des algebres graduées.
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s Exemple A.15 — L’algebre tensorielle. Soit E un espace vectoriel. On aimerait utiliser le
produit tensoriel pour former une algebre avec E. Le probléme est que v et v ® v ne vivent pas
dans le méme espace. Le moyen le plus simple de résoudre ce probléeme consiste a considérer
tous les espaces E®™ en méme temps et a former 1'algébre tensorielle :

T(E) = é E®™,

m=0

ou l'opération d’algebre est donnée par
(01 ® - R ;) X (w1®...®wj) =R QU QW Q- @ w,

et étendue par linéarité. Bien stir, T'(F) est une algebre graduée.
De méme, on définit 1'algebre extérieure et 1'algebre symétrique de E :

A(E) =P /\m E, Sym(E):= P Sym™E.
m=0 m=0
On observe que l'algebre extérieure satisfait
anB=(~1)"8 Aa,
sia e NE et 8 € NE. De plus, 'algebre symétrique est commutative alors que ’algebre

tensorielle ne 1'est pas. "

L’exemple suivant et sa variante, illustré a I'exemple A.17, revétent une importance fonda-
mentale pour la théorie des représentations du groupe symétrique et en particulier pour notre
étude.

m Exemple A.16 — L’algébre des fonctions symétriques. En continuant a étudier I'algebre des
polynoémes, considérons le sous-espace A,, de k[z1,...,x,] constitué des polynémes p tels que

P(To(1), - Tom)) = D(T1,...,2,), pour tout o € S,.

Ces polynomes sont appelés symétriques. Certainement A,, hérite la structure d’algebre graduée
de k[zq,..., 2, :

A, = @AZ,
d=0

ott A? se compose des polynomes homogenes symétriques de degré d. Pour m > n on a des
morphismes naturels

Elxy,...,¢m| = k[z1, ..., 2]
qui envoient chacun de .1, ..., %, a zéro et les autres x; a eux-mémes. En restreignant a A,,,
on obtient les morphismes
m .
o Ny — A,

d’algebres graduées. On a ainsi un systeme projectif dans k-GAlg. On appelle alors

Azl'#m/\n
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I’algebre des fonctions symétriqgues. Notons qu'un élément de A n’est pas un polynoéme, mais
une séquence (pp)n>1 de polyndmes telle que p,, € A,

Pm(T1, .20, 0,...,0) = pu(xy,...,2,), pourm>n

et sup,, deg(p,) < co. On utilisera la notation naturelle et dénotera un élément de A comme un
polynome symétrique dans une quantité dénombrable de variables. Par exemple, x1x5 + 2123 +
xox3 est dans A mais J[7°, (1 + z;) n’est pas. .

Soulignons que la différence entre la limite projective dans la catégorie k-GAIlg et celle
dans k-Alg correspond exactement d la condition sup,, deg(p,) < co. Si la limite était
dans la catégorie k-Alg, le produit infini [17°,(1 + ;) serait un élément de A.

Examinons dorénavant une variante de I’exemple précédent, dont I'expérience s’est révélée
tres utile pour notre propos.

m Exemple A.17 — L’algébre des fonctions symétriques décalées. Considérons maintenant le
sous-espace A* de k[zy,...,x,] constitué des polyndmes p tels que

P + 1, &om +n) =p(&+1,...,& +n), pour tout 0 € 5,

Autrement dit, constitué des polynémes qui sont symétriques dans les variables & = x; —i. Ces
polynomes sont appelés symétriques décalés. Tout comme avant, A’ est une algebre graduée
par degré. Pareillement, on aimerait prendre la limite projective. Cependant, la restriction p"
du morphisme

Elxy, ... xn] = Elx, ..., 2]

considérée avant a A est un morphisme d’algebres mais pas un morphisme d’algebres graduées.
Par exemple,
(w1 = (@2 = 2) + (21 — 1)(w3 — 3) + (22 — 2) (w3 — 3)

est un élément de Aj. Cependant, sa image par p3 est
(Il — 1)(33'2 — 2) — 3(1’1 — 1) — S(QCQ — 2),

qui est dans A} mais n’est pas homogene. Cela nous empéche de prendre la limite projective
dans la catégorie k-GAlg. Pour résoudre ce probléme, on va définir la catégorie des algebres
filtrées, une généralisation du concept d’algebre graduée. "

Définition A.15 — Algeébre filtrée. Soit A une algebre sur un corps commutatif &£. Une filtra-
tion sur A est la donnée d'une famille croissante {0} C Fy C F; C --- C F, C--- C Ade
sous-espaces vectoriels de A vérifiant

[e.e]
A= |JF, et, pour tout n,m € N, F,F,, C Fyyim.
n=0
L’algebre A est alors dite filtrée. Un morphisme f : A — B d’algebres filtrées sur le méme

corps est un morphisme d’algebres tel que f(F),) C @, ot (Qn)n>0 est une filtration sur B,
pour tout n. Ainsi, on a défini la catégorie k-FAlg, des algebres filtrées sur k.
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Bien siir, toute algebre graduée a une filtration naturelle, donnée par

n
F, =P A, pour tout n > 0.
=0
m Exemple A.18 — L’algébre des fonctions symétriques décalées (suite). Bien que les morphismes
pnt, considérés dans I'exemple précédent, ne soient pas des morphismes d’algebres graduées, ce

sont certainement des morphismes d’algebres filtrées. Cela nous permet de construire la limite
projective

A* o= lim A

dans la catégorie k-FAlg. Cette limite s’appelle 1'algébre des fonctions symétriques décalées.
Comme auparavant, un élément de A* est une séquence (p,),>1 de polynomes telle que p,, € A},

Pm(T1, .. 20, 0,...,0) = pu(xy, ... 2,), pourm>n

et sup,, deg(p,) < oo. Dans la suite de notre étude, on ne considérera que l'algebre compleze
des fonctions symétriques décalées. C’est-a-dire le cas k = C. Tout comme 'algebre A a la base

naturelle
o0

> ak, k=1,2,3,...,
=1

cette algebre a la base naturelle
Sl@i—i)f = (=), k=1,23....
i=1
Cependant, on utilisera généralement une variante commode, donnée par
pe(r) =3 [(wi—i+1/2)F = (i + /2% + 1 =27)¢(=k),  k=1,23,..,
i=1

ou ( est la fonction zéta de Riemann. Cette base simplifiera beaucoup de nos formules. Par
exemple, en définissant la fonction génératrice

ezc(t) — ie(a}i—i-‘rl/Z)t’
i=1

on obtient
pe() = k! [t*] e (1),

ot [z¥] est opérateur qui envoie une fonction au coefficient de 2* dans sa série de Laurent.
Cette formule sera au coeur de notre étude au cinquieme chapitre. "

]
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A.7 ACTIONS DE GROUPES

En tout généralité, une action d’un groupe G sur un objet A d’une catégorie C est un
homomorphisme

p: G — Autc(A).

Toutefois, le cas C = Set a déja une théorie tres riche et est plus approprié pour cette in-
troduction. On écrit alors juste Aut(A) pour dénoter Autser(A). La notion d’action de groupe
illustre clairement 1'idée qu'un groupe peut « encoder » les symétries (les automorphismes)
d’un ensemble quelconque.
Définition A.16 Une action d'un groupe G sur un ensemble non-vide A est une fonction
0:Gx A— Atelle que o(eg,a) = a pour tout a € A et

o(gh,a) = o(g,0(h,a))
pour tout g,h € G et a € A.

En fait, les deux définitions donnés sont équivalentes. Si on a un homomorphisme p : G —
Aut(A), alors la fonction o : G x A — A définie par o(g,a) = p(g)(a) est tel que o(eg,a) =

pleg)(a) =ida(a) = a et
(g, 0(h,a)) = a(g,p(h)(a)) = p(g)(p(h)(a)) = (p(g) © p(h))(a) = p(gh)(a) = o(gh, a).

De fagon similaire, étant donné une fonction o : G x A — A qui satisfait la définition A.16,
la fonction p : G — Aut(A) définie par p(g)(a) = o(g,a) est un homomorphisme. On utilisera
donc les deux notations de maniere interchangeable. On fera aussi un abus de notation et on
écrira g - a ou méme ga pour I'élément (g, a). Les conditions de la définition A.16 s’écrivent
alors comme (gh) -a = g(h-a) et eg - a = a.
Définition A.17 Une action d’un groupe G dans un ensemble A est appelé fidele si 'applica-
tion p : G — Aut(A) est-elle injective. Ceci se produit si et seulement si I'identité est 'unique
élément g € G tel que g - a = a pour tout a € A. Si p(eg) est 'unique automorphisme de A
avec un point fixe, 'action est dite libre.

m Exemple A.19 Tout groupe G agit sur lui-méme de fagon naturelle. Dans ce cas-la p : GXG —
G est simplement la multiplication de groupe.

o(g,h) = gh

Cet action est libre (et donc fideéle). Tout groupe agit sur lui-méme aussi pour conjugaison.
Dans ce cas, 'action est donné par

o(g,h) = ghg™".

Cet action est fidele si et seulement si le centre de G est trivial. n
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s Exemple A.20 Etant donné un groupe G et un sous-groupe (pas nécessairement normal) H.
Dans ce cas G agit sur G/H en faisant

o(g,aH) = (ga)H.

Cet action n’est pas fidele. Si H est normal et ¢ € H, g-aH = aH pour tout a € G. "

m Exemple A.21 Le groupe GL(n,Z) agit sur Z™ par multiplication matricielle. Par exemple,
I’élément

1 1

b1

transforme le réseau Z? de la facon suivante.

€ GL(2,72)

Cet action est fidele mais pas libre. La matrice que I'on a considéré fixe tous les vecteurs de la
forme (x,0), pour z € Z, par exemple. "

Remarquez que I’énoncé du théoréme suivant ne semble pas simple, mais avec notre notation,
sa démonstration devient triviale.

Théoréme A.13 — Cayley. Tout group agit de facon fidele sur un ensemble. C’est-a-dire, tout
groupe est isomorphe a un sous-groupe d'un groupe de permutation.

Démonstration. Tout groupe agit sur lui-méme de facon fidele par multiplication. Donc G
est toujours isomorphe a un sous-groupe de Aut(G). O

I Définition A.18 Une action d’un groupe G dans un ensemble A est dite transitive si pour
tout a,b € A il existe g € G tel que g-a = 0.

L’action de GL(n,Z) sur Z" n’est pas transitive parce que si a = (2,4,...,2") et b =
(1,1,...,1), le théoreme de Bachet-Bézout implique qu'’il n’existe pas g € GL(n,Z) tel que
g-a =b. L’action de GG dans lui-méme par conjugaison n’est pas transitive non plus. Toutefois,
l'action d’'un groupe sur lui-méme par multiplication et I'action de G sur G/H sont toujours
transitives.
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m Exemple A.22 Le groupe S, agit de fagon naturelle sur {1,2,...,n} par permutation de ses
éléments. C’est-a-dire,

p:S,x{l,...,n} = {1,...,n}
(o,m) = o(m)
est une action de S, sur {1,2,...,n}. Cet action est fidele et transitive. .

Définition A.19 L’orbite d’un élément a € A est définie par
Og(a):={g-ac A|geG}.

On voit que la relation ~ définie par a ~ b si a € Og(b) est une relation d’équivalence. En
particulier, les orbites forment une partition de A.

L’action induite dans chaque orbite est toujours transitive. C’est-a-dire, si x,y € Og(a),
alors x = g, -a et y = g, - a pour g1, g2 € G. On conclut que (g297") - = y. Par conséquent,
pour comprendre toutes les actions, il suffit que I'on comprenne les actions transitives. Pour
cela on va utiliser le concept suivante.

Définition A.20 Le sous-groupe stabilisateur d’un élément a € A est défini par
Stabg(a) :={g € G |g-a=a}.
Une action est fidele si et seulement si

() Stabg(a) = {ec}.

a€A

Aussi, une action est libre si et seulement si Stabg(a) = {eg} pour tout a € A.

Proposition A.14 Soit a € A et g € G. Alors,
Stabg (g - a) = g Stabg(a)g™".
Démonstration. On a h € Stabg(g - a) si et seulement si
h-(g-a)=g-a < (hg)-a=g-a < (¢ 'hg)-a=q,
qui est la définition de g~'hg € Stabg(a). Le résultat suit. O

m Exemple A.23 Quand G agit sur lui-méme par multiplication a gauche le stabilisateur est
toujours trivial

Stabg(a) = {g € G| ga = a} = {e}
et on a juste une orbite (puisque Og(e) = G). n
m Exemple A.24 Quand G agit sur lui-méme par conjugaison le stabilisateur est le centralisateur
Stabg(a) = {9 € G| gag™" = a} = {g € G| ga = ag} = Zg(a)

et I'orbite de a est la classe de conjugaison de a. "
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m Exemple A.25 Quand G agit sur G/H par multiplication a gauche le stabilisateur est
Stabg(aH) ={g € G |gaH =aH} ={g€ G|a 'ga € H} =aHa™!

et on a juste une orbite (puisque gH € Og(H) pour tout g € G). "

On définit alors des isomorphismes entre actions. Cette notion nous aidera a tirer le résultat
le plus important de cette section : la formule des classes.

Définition A.21 Etant donné un groupe G, deux actions 0 : G x A — Aet o' : G x A" — A’
sont isomorphes §’il existe une bijection ¢ : A — A’ telle que le diagramme

Gx A g

A—F

commute. C’est-a-dire, telle que g - p(a) = ¢(g - a) pour tout g € G et a € A. On appellera
les fonctions (pas nécessairement bijectives) qui satisfont cette propriété équivariantes.

On voit alors que toute action transitive est, en fait, « la méme » que 'action de I'exemple

A.20.

Théoréme A.15 Soit G un groupe agissant transitivement sur A et a € A. Alors cette action
est isomorphe a multiplication a gauche dans G/ Stabg(a).

Démonstration. Soit H = Stabg(a) et ¢ : G/H — A définie par

p(gH) =g a.

D’abord, il faut montrer que ¢ est bien définie. Si gy H = ¢oH, alors g;'go € H. C'est-a-dire,
(97 'g2)-a = a. Il suit que g;-a = gy-a. J'affirme donc que ¢ est un isomorphisme. L’équivariance
est triviale :

0(91(92H)) = 0((9192)H) = (9192) - a = g1 - (92 @) = g1 - (g2 H).
Pour montrer la bijectivité on observe que la fonction

v: A —-G/H
g-a— gH

est bien définie (par le méme raisonnement d’avant et par la transitivité) et est l'inverse de
®. O
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Corollaire A.16 — Formule des classes. Soit G un groupe fini agissant en un ensemble A et
a € A. Alors, Og(a) est un ensemble fini et

|Oc(a)| | Stabe(a)| = |G].

Démonstration. Puisque I'action induite dans Og(a) est transitive, le théoréme précedent
nous donne une bijection entre Og(a) et G/ Stabg(a). Le résultat suit. O

En fait, cette méme démonstration donne un résultat un peu plus fort : si a € A et
b e Og(a), on a |Og(a)||Stabg(b)| = |G|. En particulier, les stabilisateurs de tous les
éléments d’une orbite ont la méme cardinalité.

La formule des classes est une méthode efficace pour calculer le nombre d’éléments d’une
orbite donnée. Par contre, le résultat que 1’on verra ensuite nous permet de compter le nombre
d’orbites d'une action. Ce résultat est généralement appelé « Lemme de Burnside », mais
Cauchy le savait déja environ 50 ans plus tot.

Théoreme A.17 — Lemme (qui n’est pas) de Burnside. Soit G un groupe fini agissant en un

ensemble A. Alors le nombre d’orbites est
1
|G|

> 147,

geG

ou A9 :={a € A|g-a=a} est 'ensemble de points de A fixés par g.

Démonstration. D’abord on compte le nombre d’éléments de {(g,a) € G x A|g-a = a} de
deux manieres différentes :

YA =) HaeAlg-a=a}|=|{(9.a) e Gx Alg-a=a}| =) |Stabg(a)l.

geG geG acA
Ensuite, la formule des classes nous donne

1
|Gl

1

2 =2 o

geG acA

Pour calculer la somme de droite, on observe que dans une orbite O, chaque a € O contribue
a la somme de 1/|0] et il y a |O| de tels a. Il en résulte que chaque orbite contribue 1 a cette
somme. Le résultat suit. O]

L’exemple suivant illustre une application du théoreme A.17 pour des problemes de comp-
tage. Cet exemple est tiré du test AIME (American Invitational Mathematics Examination) de
1996.
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m Exemple A.26

Deux des carrés d'un damier 7 x 7 sont peints en jaune, et le reste est peint en vert. Deux
colorations sont équivalentes si on peut obtenir une de I'autre en appliquant une rotation
dans le plan du damier. Combien de colorations inéquivalentes sont possibles ?

Soit A I'ensemble des (429> colorations possibles. Le groupe G = Z/4Z = {e,r,r? r3} agit sur A
de facon naturelle : en faisant tourner le damier 90°. Le nombre de colorations inéquivalentes
est le nombre de orbites de cette action. On calcule alors |A9| pour chaque g € G.

e Pour g =e¢, |AY| = |A| = 1176.

e Pour g = r?, les points fixes apparaissent lorsque les deux carrés jaunes sont des réflexions
sur le centre. Donc, |A9| = (49 — 1)/2 = 24.

e Pour g =7 ou g = 1 il n’y a pas des points fixes.

Le théoreme A.17 implique qu’il existent

1176 +24 +0+0

1 = 300

colorations inéquivalentes possibles. "
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