
INTRODUCTION

Présentation du sujet

La classification des objets d’une théorie est l’un des objectifs centraux de la recherche en
mathématiques. On voudrait avoir une notion d’équivalence entre les objets d’étude et ensuite
décrire aussi explicitement que possible les classes d’équivalence. Dans ce rapport, on étudiera
les surfaces de Riemann (en particulier, celles qui sont compactes), qui sont le cadre naturel
pour étudier le comportement global des fonctions holomorphes.

Au fond, une surface de Riemann est une surface topologique bidimensionnelle dotée d’une
structure complexe qui permet de définir les fonctions holomorphes et méromorphes.

Une première approche à la classification des surfaces de Riemann compactes serait de
considérer que deux surfaces sont équivalentes s’il existe un homéomorphisme entre elles. Dans
ce cas, l’ensemble des classes d’équivalence est très simple : les surfaces non équivalentes sont
paramétrées par un entier g mesurant le nombre de trous. On dit que cet entier est le genre de
la surface. Par exemple, dans l’image ci-dessus, on voit une surface de genre 2.

Bien que cette classification soit certainement utile, elle ignore complètement la structure
complexe dont sont dotées ces surfaces. Pour une notion plus fine d’équivalence, considérons
l’ensemble des surfaces de Riemann de genre g et disons que deux de ces surfaces sont équi-
valentes s’il existe un biholomorphisme entre elles. L’ensemble des classes d’équivalence ainsi
obtenu s’appelle l’espace de modules Mg.

Il est en fait utile de considérer une légère variante de cet espace. Une différentielle abélienne
ω est un objet s’exprimant localement sous la forme f dz pour une fonction holomorphe f . On
considère ensuite l’espace de toutes les paires (X,ω), oùX est une surface de Riemann compacte
de genre g et ω est une différentielle abélienne sur X. En quotientant cet espace par un groupe
de difféomorphismes approprié, on obtientHg, l’espace de modules des différentielles abéliennes,
l’objet principal de ce rapport.

En étudiant la géométrie de cet espace, on constate qu’il est constitué de nombreuses pièces
(appelées strates) de dimensions différentes. En d’autres mots,

Hg =
∐
H(κ1, . . . , κn),

où H(κ1, . . . , κn) est le sous-ensemble de Hg composé des différentielles abéliennes qui ont des
zéros d’ordre κ1, . . . , κn. (Puisque κ1 + . . .+κn = 2g−2, cette décomposition est toujours finie.)
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On peut naturellement identifier H(κ1, . . . , κn) à un ouvert de C2g+n−1, ce qui nous donne
une mesure canonique µ sur les strates. Malheureusement, la mesure de H(κ1, . . . , κn) est tou-
jours infinie, ce qui ne nous permet pas d’obtenir des informations à partir des valeurs de
µ(H(κ1, . . . , κn)). On définit donc une hypersurface H1(κ1, . . . , κn), similaire à le sphère unité
de Rn, dont on va calculer la mesure superficielle µ1(H1(κ1, . . . , κn)). Ces valeurs s’appellent
volumes de Masur-Veech, en référence à Howard Masur et William Veech, qui ont prouvé qu’ils
sont toujours finis.

Pour calculer ces volumes, on utilise une idée remontant à Gauss qui consiste à approximer
la mesure d’un sous-ensemble de Rn par le nombre de points entiers qu’il contient.

Nos analogues à des points entiers sont appelés des surfaces à petits carreaux. Ce sont des
surfaces de Riemann obtenues à partir d’une collection finie de carrés unitaires de R2 après
l’identification des paires de côtés parallèles. L’exemple canonique est celui du tore.

−→ −→

L’étude de ces surfaces établit un pont entre géométrie et combinatoire, nous permettant
de faire des calculs discrets pour calculer les volumes de Mesur-Veech.

Motivation et applications

Tout d’abord, le fait que ce sujet soit l’un des principaux domaines de recherche de 6 lau-
réats Fields 1 au cours des 15 dernières années montre qu’il s’agit d’un domaine très actif et

1. Jean-Christophe Yoccoz, Maxim Kontsevich, Curtis McMullen, Andrei Okounkov, Artur Ávila et Maryam
Mirzakhani.
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attractif. Les techniques utilisées dans l’étude des volumes de Masur-Veech (et plus générale-
ment dans la théorie de Teichmüller) proviennent de plusieurs domaines des mathématiques :
de la combinatoire et de la théorie des représentations, comme on le voit dans ce rapport, mais
aussi de la dynamique, de la géométrie algébrique, de la géométrie plane, etc.

Une autre motivation intéressante vient de la physique. Dans leur étude des gaz de Lorenz,
Paul et Tatyana Ehrenfest [6] ont présenté un modèle consistant d’une table de billard Xa,b

obtenue à partir du plan R2 en plaçant des obstacles rectangulaires (dont les côtés sont parallèles
aux axes) de dimensions a et b centrées en chaque point de Z2.

Partant d’un point x ∈ Xa,b, on joue une boule de billard sous l’angle θ avec vitesse unitaire.
On dénote par φtθ(x) la position de cette balle après un temps t. Le taux de diffusion d’une
trajectoire donnée est défini comme

lim sup
t→+∞

log ‖φtθ(x)− x‖
log t .

En considérant une marche aléatoire, le théorème central limite impliquerait un taux de
diffusion de 1/2. Cependant, en 1980, Hardy et Weber [13] ont conjecturé que cela ne serait
pas le cas pour le modèle d’Ehrenfest. Ils avaient raison. Delecroix, Hubert et Lelièvre [5] ont
prouvé en 2014 que

lim sup
t→+∞

log ‖φtθ(x)− x‖
log t = 2

3
pour presque tous a, b, θ et x. Autrement dit, le taux de diffusion ne dépend pas de la forme
de la table de billard !

Encore plus surprenant est le fait que la seule démonstration connue de ce résultat est
fortement liée aux volumes de Masur-Veech.
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Indications pour la lecture du rapport

Notre espoir avec ce rapport est qu’il soit utile pour quelqu’un qui souhaite apprendre les
bases de la théorie de Teichmüller, des surfaces de Riemann ou de la théorie des représentations
d’un groupe fini. Au cours de ce projet, notre difficulté principale a été de trouver des références
adéquates à notre niveau mathématique. On espère donc que ce rapport permettra à un autre
groupe d’aller plus loin que ce que nous dans ces sujets magnifiques.

Ce rapport ne requiert pas de connaissances au delà des bases de l’analyse complexe, de la
théorie des groupes et des anneaux et de la théorie de la mesure. Une certaine connaissance des
variétés est sûrement utile mais absolument pas nécessaire.

L’interdépendance logique entre les chapitres est illustrée dans le diagramme suivant.

1

2

3 4
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De cette manière, quelqu’un peut apprendre la théorie des surfaces de Riemann ou la théorie
des représentations d’un groupe fini à partir de ce rapport sans étudier le reste. Dans tous les
cas, il est conseillé au lecteur de ne pas sauter l’annexe. Son contenu est utilisé dans la totalité
de ce texte.
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1
SURFACES DE RIEMANN

1.1 Définitions de base et exemples

Soit X un espace topologique. L’idée de base d’une surface de Riemann est qu’il s’agit d’un
espace qui ressemble localement à un ouvert du plan complexe, où on a tous les outils puissants
de l’analyse complexe. La formalisation de cette idée est ce que l’on appelle une « carte ».
Définition 1.1 — Carte. Une carte sur X est un homéomorphisme ϕ : U → U ′, où U ⊂ X
est ouvert dans X et U ′ ⊂ C. On dit que la carte ϕ est centrée en p ∈ U si ϕ(p) = 0.

Suppose que ϕ : U → U ′ et ψ : V → V ′ sont deux cartes. Puisque U ∩ V est ouvert dans
U et ϕ est un homéomorphisme, 2 ϕ(U ∩ V ) est ouvert dans C. De même, ψ(U ∩ V ) est ouvert
dans C.

La définition suivante sera motivée plus tard :
Définition 1.2 — Cartes compatibles. Deux cartes ϕ : U → U ′ et ψ : V → V ′ sont compatibles
si

ϕ ◦ ψ−1 : ψ(U ∩ V )→ ϕ(U ∩ V )

est holomorphe. On dit que ϕ ◦ ψ−1 et ψ ◦ ϕ−1 sont des fonctions de transition.

On observe que cette définition est symétrique parce que ψ ◦ ϕ−1 = (ϕ ◦ ψ−1)−1 et l’inverse
d’une bijection holomorphe est aussi holomorphe.
� Exemple 1.1 Soit S2 la sphère unité dans R3 :

S2 = {(x, y, w) ∈ R3 | x2 + y2 + w2 = 1}.

On considère le plan w = 0 comme le plan complexe C, avec (x, y, 0) comme z = x + yi. Soit
φ1 : S2 \ {(0, 0, 1)} → C défini par projection de (0, 0, 1).

•

•
(0, 0, 1)

•φ1(p)

•p

2. Tout homéomorphisme est ouverte.
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Surfaces de Riemann

Plus précisément,
φ1(x, y, w) = x

1− w + i
y

1− w.

L’inverse de φ1 est

φ−1
1 (z) =

(
2<(z)
|z|2 + 1 ,

2=(z)
|z|2 + 1 ,

|z|2 − 1
|z|2 + 1

)
.

On peut faire la même chose depuis le pôle sud. Formellement, on définit φ2 : S2\{(0, 0,−1)} →
C par projection puis conjugaison complexe :

φ2(x, y, w) = x

1 + w
− i y

1 + w
.

L’inverse de φ2 est

φ−1
2 (z) =

(
2<(z)
|z|2 + 1 ,

−2=(z)
|z|2 + 1 ,

1− |z|2
|z|2 + 1

)
.

Le domaine commun est S2 \ {(0, 0,±1)}, et est envoyé bijectivement dans C \ {0} par φ1 et
φ2. La fonction de transition entre ces cartes est φ2 ◦ φ−1

1 (z) = 1/z, qui est holomorphe. Ainsi,
les deux cartes sont compatibles. �

Notez que dans cet exemple, chaque point de la sphère se trouve dans au moins un des deux
cartes. Autrement dit, chaque point de S2 a une voisinage qui ressemble au plan complexe.
C’est ça que l’on attend d’une surface de Riemann.
Définition 1.3 — Atlas. Un atlas A sur X est une collection A = {ϕα : Uα → U ′α |α ∈ A} de
cartes compatibles par paires dont les domaines recouvrent X. C’est-à-dire que

X =
⋃
α∈A

Uα.

Un atlas A est dit maximal s’il n’est pas contenu dans un atlas plus grand. En d’autres
termes, si A′ est un autre atlas contenant A, alors A′ = A.

On voit que les cartes φ1 et φ2, définies dans l’exemple 1.1, forment un atlas {φ1, φ2} de S2.
Toutefois, cet atlas n’est pas maximal.

On dit que deux atlas A et A′ sont équivalentes si A ∪ A′ est aussi un atlas. Alors, étant
donné un atlas A, l’ensemble

M =
⋃
A′∼A

A′

est un atlas maximal qui contient A. En fait, il est unique. Car si A ⊂ A′, A et A′ sont
équivalentes et alors A′ ⊂ M. On conclut que pour avoir un atlas maximal, il ne faut plus
qu’avoir un atlas quelconque. Enfin, on peut définir une surface de Riemann !
Définition 1.4 — Surface de Riemann. Une surface de Riemann est un espace topologique
séparé et connexe X, avec un atlas maximal.

�
Le lecteur astucieux, qui connaît la définition d’une variété abstraite, peut se poser la
question suivante : « On ne doit pas imposer que X soit à base dénombrable ? » La
réponse est que cela est toujours vrai. Un théorème due à Radó dit que toute surface
de Riemann est à base dénombrable.
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Définitions de base et exemples

On a alors plusieurs exemples de surfaces de Riemann. Le plus simple est le plan complexe.
� Exemple 1.2 — Plan complexe. Le plan complexe C, avec l’atlas {id : C→ C} est une surface
de Riemann. �

� Exemple 1.3 — Sphère de Riemann. Soit X = S2, avec l’atlas défini dans l’exemple 1.1. C’est
une surface de Riemann compact Ĉ que l’on appelle sphère de Riemann. Habituellement, on
associe chaque point z du plan complexe au point φ−1

1 (z) de la sphère de Riemann et on appelle
le seul point de Ĉ non associé ∞. �

� Exemple 1.4 — Graphes de fonctions holomorphes. Soit U un ouvert connexe de C et f : U →
C une fonction holomorphe. On considère le graphe X de f ,

X = {(z, f(z)) ∈ C2 | z ∈ U},

et la projection

π : X → U

(z, f(z)) 7→ z.

On observe que π est un homéomorphisme dont l’inverse est z 7→ (z, f(z)). On conclut que π
est une carte sur X et donc X est une surface de Riemann. �

� Exemple 1.5 — Tores complexes. Soit Λ ⊂ C un réseau i.e. un sous-groupe discret de la forme
Zω1 ⊕ Zω2, où ω1 et ω2 sont linéairement indépendants sur R.

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

ω1

ω2

Soit X = C/Λ le groupe quotient, avec la projection π : C→ X. Notons que l’on peut imposer
la topologie quotient à X. C’est-à-dire, un ensemble U ⊂ X est ouvert si et seulement si π−1(U)
est ouvert dans C. Avec cette topologie π est continue. Ce qui implique queX est connexe (parce
que C l’est). On appelle l’ensemble

P := {λ1ω1 + λ2ω2 | λ1, λ2 ∈ [0, 1]}

le parallélogramme fondamental. On observe que l’image de π|P est X. On en déduit que X est
compact.
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Surfaces de Riemann

On va alors construire un atlas pour X. Le réseau Λ est un sous-ensemble discret de C, il
existe donc un ε > 0 tel que |ω| > 2ε pour tout ω ∈ Λ non nul. Ce choix de ε assure D(z, ε) ne
peut contenir deux points différant du réseau.

Soit Dz0 := D(z0, ε) et on considère les fonctions π|Dz0
: Dz0 → π(Dz0). Il est clair que π|Dz0

est surjective, continue et ouverte. Notre choix de ε assure que π|Dz0
est injective aussi. On

conclut que π|Dz0
est un homéomorphisme.

Enfin, pour chaque z0 ∈ C, on définit ϕz0 par l’inverse de π|Dz0
. On a montré que A :=

{ϕz0 | z0 ∈ C} est un ensemble de cartes. Pour montrer que ces cartes sont compatibles, soit
z1, z2 ∈ C et soit W = π(Dz1) ∩ π(Dz2). Si W est vide, on a rien à prouver. Sinon, considérons

T := ϕz2 ◦ ϕ−1
z1 = ϕz2 ◦ π : ϕz1(W )→ ϕz2(W ).

On doit montrer que T est holomorphe. Pour cela, on observe que π ◦ T = (π ◦ ϕz2) ◦ π = π.
C’est-à-dire, T (z) et z ont la même image par π. Donc, T (z) − z ∈ Λ. Puisque T (z) − z est
continue et Λ est discrète, T (z)−z est localement constante. On conclut que T est holomorphe.

Cette surface de Riemann est généralement décrite comme un tore, obtenu en collant les
côtés parallèles de P .

Comme on le verra dans les sections suivantes, toute surface de Riemann peut être obtenue
selon une procédure très similaire. �

1.2 Fonctions et applications holomorphes

Soit X une surface de Riemann, p un point de X et f une fonction sur X définie autour de
p. Pour vérifier si f a une propriété particulière en p, on utilisera des cartes pour transporter
la fonction au voisinage d’un point du plan complexe et on vérifiera la propriété dessus. Dans
cette section, on précisera cette notion.

La seule chose à laquelle il faut faire attention, c’est que la propriété que l’on vérifie doit
être indépendante de la carte choisie.
Définition 1.5 — Fonctions holomorphes. On dit qu’une fonction f : W → C, où W ⊂ X, est
holomorphe en p ∈ W si pour toute carte ϕ : U → U ′, avec p ∈ U , f ◦ ϕ−1 est holomorphe
en ϕ(p). On dit qu’une fonction est holomorphe sur un ensemble si elle est holomorphe en
chaque élément de cet ensemble.

On notera l’espace des fonctions holomorphes sur W ⊂ X par Hol(W ). C’est ici que l’on
justifie la définition de cartes compatibles.
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Fonctions et applications holomorphes

Proposition 1.1 Soit f : W → C une fonction définie autour de p ∈ X. S’il existe une carte
ϕ : U → U ′, avec p ∈ U , telle que f ◦ ϕ−1 soit holomorphe en ϕ(p), f est holomorphe en p.

Démonstration. Soit ψ une autre carte quelconque dont le domaine contient p. On doit
montrer que f ◦ ψ−1 est holomorphe en ψ(p). Mais

f ◦ ψ−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1).

Donc, f ◦ ψ−1 est une composition de fonctions holomorphes et donc holomorphe.

Comme dans le cas des fonctions holomorphes définies dans le plan complexe, si f et g sont
holomorphes, f + g, fg et f/g (étant donné que g ne s’annule pas) le sont également.
� Exemple 1.6 Soit X = Ĉ, le sphère de Riemann, et f : X → C. On a que f est holomorphe
en ∞ si et seulement si f(1/z) est holomorphe en z = 0. �

Les concepts associés aux fonctions méromorphes se généralisent également de la même
manière aux surfaces de Riemann.
Définition 1.6 Soit f une fonction holomorphe définie dans une voisinage pointé de p ∈ X.

a) On dit que f a une singularité apparente en p si pour toute carte ϕ : U → U ′, avec
p ∈ U , f ◦ ϕ−1 a une singularité apparente en ϕ(p).

b) On dit que f a un pôle en p si pour toute carte ϕ : U → U ′, avec p ∈ U , f ◦ ϕ−1 a un
pôle en ϕ(p).

c) On dit que f a une singularité essentielle en p si pour toute carte ϕ : U → U ′, avec
p ∈ U , f ◦ ϕ−1 a une singularité essentielle en ϕ(p).

Comme avant, il suffit de vérifier les énoncés ci-dessus pour une seule carte.

Proposition 1.2 Avec les notations ci-dessus, f a une singularité apparente (resp. pôle, sin-
gularité essentielle) si et seulement s’il existe une carte ϕ : U → U ′, avec p ∈ U , telle que
f ◦ ϕ−1 ait une singularité apparente (resp. pôle, singularité essentielle) en ϕ(p).

On peut alors définir une fonction méromorphe.
Définition 1.7 On dit qu’une fonction f : W → C, où W ⊂ X, est méromorphe en p ∈ W si
elle est holomorphe, a une singularité apparente, ou a un pôle en p. On dit qu’une fonction
est méromorphe sur un ensemble si elle est méromorphe en chaque élément de cet ensemble.

� Exemple 1.7 Soit Λ un réseau, X = C/Λ et π : C → X la projection sur le quotient. Soit
f : W → C, oùW ⊂ X, une fonction méromorphe. Alors g := f ◦π est méromorphe en π−1(W )
et Λ-périodique. C’est-à-dire, g(z + ω) = g(z) pour tout z ∈ π−1(W ) et ω ∈ Λ.

Une fonction méromorphe Λ-périodique est appelé fonction elliptique. On a alors une cor-
respondance entre fonctions elliptiques sur C et fonctions méromorphes sur C/Λ. �

Certains théorèmes concernant les fonctions holomorphes et méromorphes sont immédia-
tement hérités des théorèmes correspondants concernant les fonctions définies sur des ouverts
dans le plan complexe.
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Théorème 1.3 — Principe des zéros isolés. Soit f une fonction méromorphe définie sur un
ouvert connexe W d’une surface de Riemann X. Si f n’est pas identiquement nulle, les zéros
et les pôles de f forment un sous-ensemble sans point d’accumulation de W .

Le théorème ci-dessus a une implication immédiate pour les surfaces compactes.

Corollaire 1.4 Soit f une fonction méromorphe non nulle sur une surface de Riemann com-
pacte X. Alors f a un nombre fini de zéros et de pôles.

Démonstration. Soit S l’ensemble de zéros et pôles de f . Puisque S n’a pas de point d’accu-
mulation, S est fermé et donc compact (puisque X l’est). Comme

{{x} ⊂ X | x ∈ S}

est un recouvrement ouvert de S, il existe une sous-recouvrement finie. Le résultat suit.

Théorème 1.5 — Principe du prolongement analytique. Supposons que f et g soient deux
fonctions méromorphes définies sur un ouvert connexe W d’une surface de Riemann X.
Supposons que f = g sur un sous-ensemble S ⊂ W qui a un point d’accumulation dans W .
Alors f = g sur W .

Théorème 1.6 — Principe du maximum. Soit f holomorphe sur un ouvert connexe W d’une
surface de Riemann X. Supposons qu’il existe un point p ∈ W tel que |f(x)| ≤ |f(p)| pour
tout x ∈ W . Alors f est constante sur W .

Théorème 1.7 — Théorème de l’application ouverte. Soit f holomorphe non-constante sur un
ouvert connexe W d’une surface de Riemann X. Alors f est une application ouverte.

On a le corollaire suivant, qui est un théorème ne concernant que les surfaces de Riemann,
en ce sens qu’il n’existe pas d’analogue précis pour les fonctions sur le plan complexe.

Corollaire 1.8 Soit X une surface de Riemann compacte. Supposons que f soit holomorphe
sur tout X. Alors f est une fonction constante.

Démonstration. La fonction f est continue, donc |f | atteint une valeur maximale M . Soit
p un point sur la surface avec |f(p)| = M . Alors |f | atteint un maximum local en p, est
donc constante dans un voisinage de p. Par conséquent, l’ensemble des x tels que |f(x)| = M
est ouvert. Comme il est également fermé (par continuité) ce doit être toute la surface (par
connexité). Alors f(X) est contenue dans un cercle de rayon M , ce qui contredit le théorème
de l’application ouverte.

�
Pourquoi cette preuve ne fonctionne-t-elle pas pour un sous-ensemble compact K de
C ? Dans ce cas, on ne peut pas garantir que l’ensemble des points où la fonction atteint
son module maximum est ouvert dans K. Pensez à la fonction identité restreinte au
disque unité, par exemple. Dans le cas d’une surface de Riemann, l’existence de cartes
autour de tout point résout ce problème.
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Ce théorème montre que, si les fonctions C∞ sont immensément utiles dans l’étude des
variétés différentielles, les fonctions holomorphes ne le sont pas énormément dans l’étude des
surfaces compactes de Riemann : elles sont trop restrictives. Ce problème sera bientôt résolu
en considérant les différentielles holomorphes.

On définit alors des applications entre deux surfaces de Riemann X et Y .
Définition 1.8 — Applications holomorphes. On dit qu’une applications f : W → Y , où
W ⊂ X, est holomorphe en p ∈ W si pour toutes les cartes ϕ : U → U ′, avec p ∈ U , et
ψ : V → V ′, avec f(p) ∈ V , ψ ◦ f ◦ ϕ−1 est holomorphe en ϕ(p). On dit qu’une application
est holomorphe sur un ensemble si elle est holomorphe en chaque élément de cet ensemble.

On appellera constamment des applications holomorphes entre des surfaces de Riemann des
revêtements holomorphes. 3 Une application holomorphe bijective dont l’application réciproque
est également holomorphe est appelée biholomorphe.

On notera l’espace des applications holomorphes entreW ⊂ X et Y par Hol(W ;Y ). Comme
auparavant, il est possible de vérifier l’homomorphicité d’une application avec n’importe quelle
paire de cartes. Les applications holomorphes entre les surfaces de Riemann se comportent
comme prévu.

Proposition 1.9 Soient X, Y, Z des surfaces de Riemann.
a) Si f : X → Y est holomorphe, alors f est C∞.
b) Si f : X → Y et g : Y → Z sont holomorphes, alors la composition g ◦ f : X → Z est

holomorphe aussi.

On présente ici quelques généralisations des théorèmes classiques sur les fonctions holo-
morphes sur le plan complexe.

Théorème 1.10 — Théorème de l’application ouverte. Soit f : X → Y un revêtement holo-
morphe entre des surfaces de Riemann. Alors f est une application ouverte.

Théorème 1.11 Soit f : X → Y une bijection holomorphe entre des surfaces de Riemann.
Alors, l’application réciproque f−1 est aussi holomorphe.

En d’autres termes, ce théorème dit que pour qu’une application soit biholomorphe, il suffit
qu’elle soit holomorphe et bijective.

Théorème 1.12 — Principe du prolongement analytique. Supposons que f et g soient deux
applications holomorphes entre des surfaces de Riemann X et Y . Supposons que f = g sur
un sous-ensemble S ⊂ X qui a un point d’accumulation dans X. Alors f = g.

Théorème 1.13 Soit f : X → Y un revêtement holomorphe entre des surfaces de Riemann X
et Y . Alors, pour chaque y ∈ Y , f−1(y) est un sous-ensemble de X sans point d’accumulation.

3. Hors du contexte des surfaces de Riemann, ce que nous appelons un revêtement est généralement appelé
un revêtement ramifié.
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On a aussi une généralisation du corollaire 1.8 aux applications holomorphes :

Théorème 1.14 Soit X une surface de Riemann compacte et f : X → Y un revêtement
holomorphe. Alors Y est compacte et f est surjective.

Démonstration. Puisque f est holomorphe et que X est ouvert en lui-même, f(X) est ouvert
dans Y par le théorème d’application ouverte. D’autre part, puisque X est compact, f(X) est
compact et puisque Y est séparé, f(X) est fermé dans Y . D’où, f(X) = Y .

De même que les endomorphismes diagonalisables qui peuvent être exprimés sous une forme
simple en prenant une base bien choisie, les revêtements holomorphes peuvent être exprimés
sous une forme simple en prenant des cartes bien choisies.

Théorème 1.15 — Structure locale des revêtements holomorphes. Soit f : X → Y un revê-
tement holomorphe entre des surfaces de Riemann et soit p ∈ X. Alors il existe deux cartes
ϕ : U → U ′ et ψ : V → V ′ centrées en p et f(p), respectivement, et un unique entier positif
m tels que

ψ ◦ f ◦ ϕ−1(z) = zm.

Démonstration. Étant donné une carte ψ : V → V ′ centrée en f(p), on choisit une carte
ϕ̃ : Ũ → Ũ ′ quelconque centrée en p. Alors la série entière de ψ ◦ f ◦ ϕ̃−1 est

ψ ◦ f ◦ ϕ̃−1(w) =
∞∑
k=m

ckw
k,

où cm 6= 0 et m ≥ 1 (car ψ ◦ f ◦ ϕ̃−1(0) = 0). Ainsi, il suit que ψ ◦ f ◦ ϕ̃−1(w) = wmS(w), où
S est holomorphe en 0 et S(0) 6= 0. Dans ce cas, il existe une fonction R, holomorphe dans un
voisinage de 0, telle que R(w)m = S(w) et donc ψ ◦ f ◦ ϕ̃−1(w) = (wR(w))m.

Soit T (w) = wR(w). Puisque T ′(0) = R(0) 6= 0, on a que T est inversible dans un voisinage
de 0. On en déduit que ϕ := T ◦ ϕ̃ est une carte centrée en p. Comme

ψ ◦ f ◦ ϕ−1 = (ψ ◦ f ◦ ϕ̃−1) ◦ T−1,

on conclut que ψ ◦ f ◦ ϕ−1(z) = zm.

Définition 1.9 Soit f : X → Y un revêtement holomorphe entre des surfaces de Riemann et
soit p ∈ X. On dit que l’entier m du théorème 1.15 est la multiplicité de f en p et on le
dénote Multp(f).

Si Multp(f) ≥ 2, on dit que f est ramifié en p et que p est un point de ramification pour
f . Dans ce cas, on appelle f(p) un point de branchement.

Dans le cas de surfaces définies à partir d’un quotient, on dira qu’un point de la surface est
un point de branchement s’il s’agit d’un point de branchement pour l’application quotient.

Selon le principe des zéros isolés, l’ensemble des points de ramification est discret. Si la
surface de Riemann X est compacte, cet ensemble est fini. Dans ce cas l’ensemble de points de
branchement est aussi fini.
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Un moyen simple de calculer la multiplicité d’une application f : X → Y en un point p ∈ X
consiste à dessiner un petit lacet autour de p dans X. Si l’image de ce lacet par f tourne m
fois autour de f(p) dans Y , alors la multiplicité de f en p est m.
� Exemple 1.8 On peut faire des constructions analogues à celle de l’exemple 1.5 avec des
quotients plus complexes. Par exemple, considérons l’ensemble ci-dessous, composé par 3 carrés
unités dans le plan complexe, dont les côtés de même couleur sont identifiés par translation.

Soit C l’ensemble des carrés et L la surface de Riemann obtenue par l’identification des côtés.
Il est évident que tous les points à l’intérieur des carrés et que tous les intérieurs des côtés ne
sont pas des points de ramification. Comme tous les sommets sont équivalents (ils ont la même
image pour l’application quotient), il suffit de vérifier si un sommet quelconque est un point de
ramification. On fait donc un petit lacet autour du sommet inférieur gauche, en numérotant les
étapes nécessaires pour revenir au même point.

1

2 3

4

56 7

8

On observe que l’angle total parcouru est de 6π, ce qui implique une multiplicité de l’application
quotient à ce sommet égale à 3. Il suit que les sommets sont des points de ramification. �

Soit X une surface de Riemann compacte et f : X → Y un revêtement holomorphe. Le
théorème 1.14 dit que nécessairement Y est compact et que f est surjective. On se demande
donc dans quelle mesure f est loin d’être une bijection. C’est-à-dire que si y ∈ Y , on cherche la
taille de f−1(y). Comme d’habitude, compter les éléments en tenant compte de la multiplicité
nous donne une belle formule.
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Théorème 1.16 Soit f : X → Y un revêtement holomorphe entre deux surfaces de Riemann
compactes. Alors l’entier ∑

p∈f−1(y)
Multp(f)

ne dépend pas de y ∈ Y . Cet entier est appelé le degré de f et est dénoté deg(f).

Dans les conditions de ce théorème, l’ensemble des points de branchement est fini et donc
presque tous (c’est-à-dire tous sauf un nombre fini) les points ont exactement deg(f) images
réciproques.

Multp(f) = 2
Multp(f) = 3

Multp(f) = 2

Y

X

f

Puisque la multiplicité d’un revêtement holomorphe en un point p est toujours positive, on
a le corollaire ci-dessous.
Corollaire 1.17 Soit f : X → Y un revêtement holomorphe entre deux surfaces de Riemann
compactes. Alors f a degré 1 si et seulement si f est une bijection.

1.3 Classification topologique des surfaces compactes

L’un des principaux objectifs de notre étude est de trouver des relations d’équivalence adé-
quates aux surfaces de Riemann compactes, puis de décrire les classes d’équivalence. Une pre-
mière tentative, plus superficielle, consisterait à dire que deux surfaces de Riemann sont équi-
valentes s’il existe un homéomorphisme (c’est-à-dire une bijection continue dont la réciproque
est aussi continue) entre elles. C’est cette approche que l’on adoptera dans cette section.

Un objet essentiel sera le polygone défini ci-dessous.
Définition 1.10 Soit g ≥ 0 un entier. Pour g ≥ 1 on définit Fg comme le polygone dont les
arêtes sont nommées

a1, b1, a
′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g.

Les arêtes ai, bi sont parcourues dans le sens anti-horaire et les arêtes a′i, b′i dans le sens
horaire. Pour g = 0, on définit F0 comme le polygone à deux arêtes a, a′.

Enfin, on note |Fg| la surface (topologique) obtenue en identifiant ai avec a′i et bi avec b′i
en tenant compte de leurs orientations respectives.
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pactes

Pour comprendre les surfaces |Fg|, on va les « construire ». Premièrement, si g = 0, la
surface obtenue en quotientant est le sphère de Riemann :

<a′ < a
π

<a

.

Pour g = 1, on obtient un tore :

>
a

>
a′

>b′ > b ∼

>

>
a

>
b′

b ∼
<
a

<

b
.

Pour g ≥ 2, on se rend compte que la transformation g 7→ g + 1 équivaut à mettre une anse
sur la surface |Fg|.

>b
′

>a
′

>a

>
b

∼

>
a

>
a′

>b′ > b ∼
<
a

<

b

∼

>
a

>

b

.

On conclut que |Fg| est une sphère avec g anses. De manière équivalente, pour g = 0, |Fg|
est une sphère et, pour g ≥ 1, un tore avec g trous.

L’importance de ces surfaces réside dans le fait que toute surface de Riemann compacte
est homéomorphe à |Fg| pour un certain entier g ≥ 0. De plus, deux de ces surfaces sont
homéomorphes si et seulement si elles ont le même g.

Théorème 1.18 Soit X une surface de Riemann compacte. Alors, il existe un unique entier
g ≥ 0 tel que X soit homéomorphe à |Fg|. On dit que cet entier g est le genre de X. Enfin,
deux surfaces n’ayant pas le même genre ne sont pas homéomorphes.

Ce théorème résout notre problème décrit au début de la section. Si l’on considère deux sur-
faces de Riemann compactes comme équivalentes si elles sont homéomorphes, alors l’ensemble
des classes d’équivalence est exactement l’ensemble des entiers naturels N.
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Cette classification, bien que simple, est trop faible : elle ignore complètement la structure
complexe des surfaces de Riemann. Dans le chapitre suivant, on dira que deux surfaces de
Riemann avec le même genre g sont équivalentes si elles sont biholomorphes. L’ensemble des
classes d’équivalence est l’espace de modulesMg, dont la géométrie sera étudiée. On verra que
si g = 0, il n’y a qu’une surface de Riemann à biholomorphisme près : la sphère de Riemann.
Pour g = 1, toute surface est biholomorphe à un tore complexe et si g > 1, l’ensemble des
classes d’équivalence est continu et de dimension 3g − 3.

1.4 La caractéristique d’Euler

Dans les 2 prochaines sections, on présentera quelques outils fondamentaux de la topologie
algébrique. L’accent sera mis principalement sur le développement de l’intuition de ces outils
plutôt que sur le lien logique entre les résultats. Pour cette raison, plusieurs énoncés seront
omis. Le lecteur intéressé peut trouver les démonstrations dans [19].

Soit X une surface de Riemann compacte. Une triangulation de X est une décomposition
de X en sous-ensembles fermés, chacun homéomorphe à un triangle, de sorte que deux triangles
quelconques soient disjoints, ou ne se rencontrent qu’à un seul sommet ou ne se rencontrent
que le long d’une seule arête.

Un corollaire direct du théorème 1.18 est le fait que chaque surface compacte de Riemann
possède une triangulation finie.

Proposition 1.19 Toute surface de Riemann compacte X admet une triangulation finie.

Les triangulations sont importantes car elles permettent de définir la caractéristique d’Euler
d’une surface compacte de Riemann.
Définition 1.11 — Caractéristique d’Euler. Étant donné une triangulation de X, avec v
sommets, a arêtes et t triangles. La caractéristique d’Euler de X est le nombre entier
χ(X) = v − a+ t.

Un fait topologique important est que la caractéristique d’Euler est indépendante de la
triangulation choisie, ce qui justifie notre notation qui ne la prend pas en compte.
� Exemple 1.9 La sphère de Riemann a caractéristique d’Euler 2. Pour montrer cela, on observe
la triangulation ci-dessous.

Cette triangulation a 4 sommets, 6 arêtes et 4 triangles. D’où, χ(Ĉ) = 4− 6 + 4 = 2. �
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Pour calculer la caractéristique d’Euler d’un tore complexe, on pourrait afficher une trian-
gulation explicite d’un tore. Cependant, il est plus facile de voir cela en utilisant son parallélo-
gramme fondamental.
� Exemple 1.10 Les tores complexes ont caractéristique d’Euler 0. Étant donné un tore com-
plexe C/Λ, on peut calculer sa caractéristique d’Euler en triangulant son parallélogramme
fondamental. Pour cela, on dessine une diagonal de ω1 à ω2.

ω1

ω2

On a v = 1 car tout point du réseau est équivalent à 0, a = 3 car les arêtes opposés du
parallélogramme sont équivalents et t = 2. Alors, χ(C/Λ) = 1− 3 + 2 = 0. �

En fait, on peut généraliser cette méthode pour trouver la caractéristique d’Euler de toute
surface de Riemann compacte !

Théorème 1.20 Soit X une surface de Riemann compacte de genre g. Alors la caractéristique
d’Euler de X est

χ(X) = 2− 2g.

Démonstration. Si g ≥ 1, il suffit de trianguler le polygone Fg :

b′1

a′1

b1

a1b′g

a′g

bg

ag
.

Cette triangulation 4g arêtes internes, qui correspondent à 4g arêtes sur X. Cependant, des
4g arêtes latérales, seules 2g sont distinctes sur X. Tous les 4g triangles de Fg deviennent
des triangles distinctes dans X. Enfin, comme tous les sommets latéraux sont identifiés, la
triangulation de X n’a que 2 sommets. On en déduit que

χ(X) = 2− (4g + 2g) + 4g = 2− 2g.

Puisque le théorème est trivialement vrai dans le cas g = 0, le résultat suit.
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En revanche, on peut utiliser le théorème 1.20 pour calculer le genre de certaines surfaces.
� Exemple 1.11 Soit X la surface de Riemann de l’exemple 1.8. Pour calculer le genre de X,
on va la trianguler de la façon suivante :

.

Comme tous les sommets sont équivalents, cette triangulation n’a qu’un seul sommet. On a
une arête latérale de chaque couleur plus les 5 arêtes des triangles et le nombre de triangles est
certainement 6. On conclut que

χ(X) = 1− 9 + 6 = −2.

D’où le genre de X est 2. C’est-à-dire que topologiquement cette surface de Riemann est un
tore à deux trous,

ce qui n’est pas évident du tout. �

La constance du degré pour un revêtement holomorphe, combinée à la théorie de la caracté-
ristique d’Euler, nous donne une formule importante reliant les genres du domaine et de l’image
avec le degré et la multiplicité du revêtement.

Théorème 1.21 — Riemann-Hurwitz. Soit f : X → Y un revêtement holomorphe entre des
surfaces de Riemann compactes de genre g et g′, respectivement. Alors,

2g − 2 = deg(f)(2g′ − 2) +
∑
p∈X

(Multp(f)− 1).

� Notez que puisque f est une application entre des surfaces de Riemann compactes,
l’ensemble des points de ramification de f est fini et donc la somme qui apparaît dans
la formule de Riemann-Hurwitz l’est également.
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Démonstration. Prenons une triangulation de Y , de sorte que chaque point de branchement
de f soit un sommet. Supposons qu’il y ait v sommets, a arêtes et t triangles. Soulevons cette
triangulation à X via l’application f et supposons qu’il y ait v′ sommets, a′ arêtes et t′ triangles
sur X. Notez que chaque point de ramification de f est un sommet sur X.

Puisque les points de ramification sont les sommets des triangles, t′ = deg(f)t et a′ =
deg(f)a. On peut compter le nombre d’images réciproques d’un point y ∈ Y quelconque comme

|f−1(y)| =
∑

p∈f−1(y)
1 = deg(f)−

∑
p∈f−1(y)

(Multp(f)− 1).

Par conséquent, le nombre total de sommets de X est

v′ =
∑
y∈Y

sommet

deg(f)−
∑

p∈f−1(y)
(Multp(f)− 1)


= deg(f)v −

∑
y∈Y

sommet

∑
p∈f−1(y)

(Multp(f)− 1)

= deg(f)v −
∑
p∈X

sommet

(Multp(f)− 1).

On en déduit que

2g − 2 = −χ(X)
= −v′ + a′ − t′

= −deg(f)v +
∑
p∈X

sommet

(Multp(f)− 1) + deg(f)a− deg(f)t

= −deg(f)χ(Y ) +
∑
p∈X

sommet

(Multp(f)− 1)

= deg(f)(2g′ − 2) +
∑
p∈X

(Multp(f)− 1),

où la dernière égalité vaut parce que tout point de ramification est un sommet de X.

Outre que la formule de Riemann-Hurwitz est très pratique pour calculer le genre de cer-
taines surfaces, elle a le corollaire suivant d’une grande utilité.

Corollaire 1.22 En utilisant la notation du théorème précédent :
1. On a toujours g ≥ g′. En particulier, si g = 0 alors g′ = 0 ;
2. Si g′ = 0 et g > 0, alors f est ramifié ;
3. Si g′ = 1, f n’est pas ramifié si et seulement si g = 1 ;
4. Si f n’est pas ramifié et g′ > 1, alors soit g = g′ et deg(f) = 1, soit g > g′.

Dans plusieurs situations, il est utile de « percer » les surfaces de Riemann pour les rendre
plus « bien comportées ». Plus précisément, si X est une surface de Riemann compacte, on
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considèreX\P , où P est un ensemble discret (généralement donné par les points de ramification
d’un certain revêtement holomorphe). Bien entendu, X \ P est un sous-ensemble ouvert de X
et constitue donc une surface de Riemann en soi. On dira que les surfaces de Riemann ainsi
obtenues sont des surfaces de Riemann perforées.

1.5 Le groupe fondamental

La topologie algébrique est l’étude des règles reliant les espaces topologiques aux objets d’une
catégorie algébrique donnée C telles que les morphismes dans Top (les applications continues),
la catégorie des espaces topologiques, soient liés aux morphismes de C (les homomorphismes), en
préservant les notions de composition et d’isomorphisme. Ces règles sont officiellement connues
sous le nom de foncteurs. Dans cette section, on étudiera l’un des principaux foncteurs de la
topologie algébrique : le groupe fondamental. On verra cet objet dans le contexte des surfaces de
Riemann, mais il existe avec peu ou pas de modification dans les espaces topologiques généraux.
Le lecteur intéressé par ce contexte plus général peut consulter le livre [14].

Le groupe fondamental sera défini en termes de déformations de chemins sur la surface de
Riemann. On rappelle qu’un chemin dans X est une application continue f : I → X où I est
l’intervalle unitaire [0, 1].
Définition 1.12 — Homotopie. Soit X une surface de Riemann. Une homotopie de chemins
dans X est une famille ft : I → X, 0 ≤ t ≤ 1, telle que

1. Les points ft(0) = x0 et ft(1) = x1 sont indépendantes de t ;
2. L’application associé F : I × I → X, définie par F (s, t) = ft(s) est continue.

Lorsque deux chemins f0 et f1 sont reliés par une homotopie ft, ils sont dits homotopes.

L’homotopie est la formalisation de la notion intuitive d’une déformation continue d’un
chemin.

x0 x1

f1

f0

� Exemple 1.12 — Homotopies Linéaires. Deux chemins f0, f1 quelconques dans C ayant la
même origine x0 ainsi que la même extrémité x1 sont homotopes par l’homotopie

ft(s) := (1− t)f0(s) + tf1(s).

Plus généralement, tous les chemins dont l’origine et l’extrémité sont fixées dans un sous-
ensemble convexe de C sont homotopes. �
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La relation d’homotopie dans les chemins avec des origines et extrémités fixes forme une
relation d’équivalence. On notera la classe d’équivalence d’un chemin f pour [f ] et l’appellera
la classe d’homotopie de f .

Étant donné deux chemins f, g : I → X tels que f(1) = g(0), il existe un chemin produit
qui traverse d’abord f puis g, défini par la formule

f · g(s) =

f(2s) si 0 ≤ s ≤ 1
2

g(2s− 1) si 1
2 ≤ s ≤ 1

.

Ce produit est compatible avec les classes d’homotopie. Autrement dit, si f0, f1 sont ho-
motopes par l’homotopie ft et g0, g1 sont homotopes par l’homotopie gt, alors ft · gt est une
homotopie reliant f0 · g0 et f1 · g1.

f1

f0

g1

g0

En particulier, si l’on limite notre attention aux chemins f dont l’origine et l’extrémité sont
égaux (c’est-à-dire tels que f(0) = f(1)), ce produit est toujours bien défini. Ces chemins sont
appelés lacets et le point commun x0 = f(0) = f(1) est appelé le point de base.

On peut maintenant définir le groupe fondamental, introduit en 1895 par Henri Poincaré
dans son article Analysis Situs[23] qui a révolutionné les mathématiques.
Définition 1.13 — Groupe fondamental. Soit X une surface de Riemann et x0 un point de
X. L’ensemble de toutes les classes d’homotopie [f ] des lacets f : I → X au point de base
x0 est noté π1(X, x0) et est appelé le groupe fondamental de X basé en x0. Le structure de
groupe est donné par [f ][g] := [f · g].

Le fait que π1(X, x0) soit un groupe est une simple vérification des axiomes. Étant donné un
élément [f ] de π1(X, x0), son inverse est donné par [s 7→ f(1− s)] =: [f ]. L’identité du groupe
est certainement le lacet constante égal à x0.

L’index 1 du groupe fondamental provient du fait que π1(X, x0) n’est que le premier élément
d’une suite de groupes πn(X, x0), appelés groupes d’homotopie, définis de manière analogue,
mais en utilisant le cube n-dimensionnel In à la place de I.

Une requête naturelle est la dépendance de π1(X, x0) sur le point de base x0. Puisque
π1(X, x0) concerne uniquement la composante connexe par arcs de x0, il n’existe une relation
entre π1(X, x0) et π1(X, x1) que s’il existe un chemin h : I → X reliant x0 et x1.

x0
x1

h

f

Dans ce cas, pour chaque lacet f basé en x1, le lacet (h · f) ·h est basée en x0. En fait, cette
application définit un isomorphisme de groupe.
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Proposition 1.23 Soit x0, x1 des points d’une surface de Riemann X reliés par un chemin
h : I → X. Alors, l’application

π1(X, x1)→ π1(X, x0)
[f ] 7→ [h · f · h]

est un isomorphisme.

� Formellement, il faudrait écrire [(h · f) · h], car le produit des chemins n’est pas as-
sociatif. Cependant, (h · f) · h est clairement homotope à h · (f · h), ce qui rend la
distinction inutile dans le contexte des classes d’équivalence.

Démonstration. Soit Ph cette application. D’abord, Ph est un homomorphisme parce que

Ph([f ][g]) = Ph([f · g]) = [h · f · g · h] = [h · f · h · h · g · h] = Ph([f ])Ph([g]).

Aussi, Ph est un isomorphisme parce que Ph est son inverse.

Ainsi, comme toute surface de Riemann X est connexe par arcs, le groupe π1(X, x0) est
indépendant du choix du point de base à isomorphisme près. On note donc π1(X, x0) tout
simplement par π1(X).

Ci-dessous, on présente quelques croquis de démonstration de certains groupes fondamen-
taux. Dans toutes les « démonstrations », on montrera que π1(X) est un groupe généré par un
ensemble d’éléments et satisfaisant une relation donnée. Cependant, on ne va pas montrer qu’il
s’agissait de la seule relation satisfaite par ces éléments. Néanmoins cela sera vrai dans les deux
cas.
� Exemple 1.13 — Sphère à n trous. Soit X = Ĉ \ {p1, . . . , pn} la sphère de Riemann perforée
à n trous. Le groupe fondamental π1(X) est généré par les classes d’homotopie des lacets
f1, f2, . . . , fn contournant chacun l’un des trous.

pn

p1

. . .

fn

f1

La courbe f1 · f2 · . . . · fn peut être contractée en un point, ce qui implique la relation

[f1][f2] . . . [fn] = id

dans π1(X). On en déduit que π1(X) = 〈g1, . . . , gn | g1 · · · gn = e〉. �
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Le groupe fondamental

� Exemple 1.14 — Surface de genre g. Pour calculer le groupe fondamental d’une surface de
Riemann X de genre g, considérons le polygone Fg. Puisque tous les sommets de Fg sont
équivalents, les arêtes a1, b1, a

′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g de Fg forment des lacets dans X. Aussi, on

sait que ai et a′i ont une orientation opposée et que en parcourant tous les arêtes, on revient au
point d’origine. On conclut que π1(X) est le groupe engendré par 2g éléments A1, B1, . . . , Ag, Bg

satisfaisant la relation
[A1, B1][A2, B2] . . . [Ag, Bg] = e,

où [Ai, Bi] = AiBiA
−1
i B−1

i est le commutateur de Ai et Bi. En particulier, le groupe fondamental
des tores complexes �

Comme il a été dit au début de cette section, en plus du groupe fondamental étant une règle
qui identifie chaque espace topologique à un groupe, on peut aussi identifier chaque application
continue à un homomorphisme.

Supposons ϕ : X → Y est une application continue entre des surfaces de Riemann telle que
ϕ(x0) = y0. Alors ϕ induit un homomorphisme ϕ∗ : π1(X, x0)→ π1(Y, y0), défini en composant
les lacets f : I → X basés en x0 avec ϕ, c’est-à-dire, ϕ∗([f ]) := [ϕ ◦ f ].

Les deux propriétés fondamentales de l’homomorphisme induit sont : 4

— Si ψ : X → Y et ϕ : Y → Z sont des applications continues telles que ψ(x0) = y0 et
ϕ(y0) = z0, alors (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ ;

— L’identité idX : X → X de X induit l’identité idπ1(X,x0) : π1(X, x0) → π1(X, x0) de
π1(X, x0). C’est-à-dire que idπ1(X,x0) = (idX)∗.

Une application immédiate de ces propriétés est le fait fondamental que si ϕ est un homéo-
morphisme, alors ϕ∗ est un isomorphisme de groupes. C’est ce qui fournit la grande utilité de
la topologie algébrique. Montrer que deux espaces topologiques sont homéomorphes est géné-
ralement simple : il suffit d’afficher un homéomorphisme. Par contre, il est difficile de montrer
que deux espaces topologiques ne sont pas homéomorphes. Cependant, on a maintenant un
moyen systématique de procéder : si les groupes fondamentaux de deux espaces topologiques
sont différents, ils ne sont pas homéomorphes !
� Exemple 1.15 Les considérations ci-dessus permettent de montrer facilement que deux surfaces
de Riemann compactes sont homéomorphes si et seulement si elles ont le même genre. En fait,
soit X une surface de genre g et soit π1(X) son groupe fondamental (calculé dans l’exemple
1.14). L’abélianisé d’un groupe G est le groupe G/[G,G], où [G,G] est le sous-groupe de G
engendré par [g1, g2] où g1, g2 ∈ G. Dans notre cas, G = π1(X) et alors,

π1(X)
[π1(X), π1(X)] = Z⊕2g.

On sait déjà que deux surfaces de Riemann compactes homéomorphes ont le même genre.
Puisque deux surfaces de genre différent ont un groupe fondamental abélianisé différent, elles
ne sont pas homéomorphes. �

4. Ces propriétés font du groupe fondamental un foncteur (covariant) de la catégorie des espaces topologiques
pointés vers la catégorie des groupes.
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1.6 Le théorème d’uniformisation

À ce stade, on peut déjà faire de grands progrès dans la classification des surfaces de Rie-
mann compactes à biholomorphisme près. Le théorème ci-dessous est l’un des résultats les plus
importants de la théorie des surfaces de Riemann.

Théorème 1.24 — Théorème d’uniformisation (Poincaré - Koebe). Soit X une surface de
Riemann simplement connexe. Alors X est biholomorphe à l’une des trois surfaces suivantes :
— Le plan complexe C ;
— Le disque unité D ;
— La sphère de Riemann Ĉ.

Puisqu’une surface de Riemann compacte est simplement connexe si et seulement si elle
est de genre 0, ce théorème implique tout de suite qu’il n’existe qu’une surface de Riemann
compacte de genre 0 à biholomorphisme près. Pour classer les autres surfaces compactes, il
faudra associer une surface simplement connexe à chacune d’elles. Heureusement, il existe un
moyen canonique de le faire, que l’on va maintenant étudier.
Définition 1.14 — Revêtement d’une surface. Soit X une surface de Riemann. Un revêtement
de X est une surface de Riemann X̃, avec une application continue p : X̃ → X telle que
tout point x ∈ X ait un voisinage U ⊂ X tel que p−1(U) soit une union (non vide) d’ouverts
disjoints dans X̃, chacun d’eux étant envoyé de manière homéomorphe sur U par p.

� Il est important de distinguer la notion analytique de revêtement holomorphe de la no-
tion topologique de revêtement. En fait, un revêtement holomorphe est un revêtement
au sens de la définition 1.14 si et seulement si il n’est pas ramifié.

En effet, on a déjà rencontré des revêtements !
� Exemple 1.16 Soit X = C/Λ un tore complexe et π : C→ X l’application quotient. Alors C
(avec cet application) est un revêtement de X !

π−1

C’est exactement le fait que C est simplement connexe, alors que X ne l’est pas, qui nous
permettra d’utiliser le théorème 1.24 pour classifier les surfaces compactes. �
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L’exemple 1.16 n’est pas particulier : toute surface de Riemann X a un revêtement simple-
ment connexe.
Théorème 1.25 — Revêtement universel. Soit X une surface de Riemann. Alors il existe un
revêtement simplement connexe (X̃, p) de X. En outre, p est une application holomorphe
et X̃ est universel en ce sens que si (Y, q) est un autre revêtement de X alors il existe un
revêtement f : X̃ → Y tel que le diagramme

X̃ X

Y

p

f
q

commute. On dit que X̃ est le revêtement universel de X.

Comme on pouvait s’y attendre, le revêtement universel est unique à isomorphisme près. 5

L’étude des revêtements est profonde et intéressante. Cependant, pour notre étude, on n’aura
besoin que des propriétés fondamentales suivantes :
— Le groupe fondamental π1(X) agit de façon naturelle sur X̃ ;
— Il y a un biholomorphisme entre X̃/π1(X) et X.
Le lecteur intéressé à étudier ces aspects plus en détail est invité à lire le chapitre 4 de

[24]. Quoi qu’il en soit, le point important est que ces considérations permettent de conclure le
théorème suivant.
Théorème 1.26 — Uniformisation des surfaces de Riemann compactes. Soit X une surface de
Riemann compacte et soit g son genre. Alors,
— Si g = 0, X est biholomorphe à la sphère de Riemann Ĉ ;
— Si g = 1, X est biholomorphe à un tore complexe C/Λ ;
— Si g ≥ 2, X est biholomorphe au quotient D/G, où G est un groupe fini.

1.7 Formes différentielles

La force de l’analyse complexe repose sur deux piliers : la rigidité des fonctions holomorphes,
ce qui nous permet d’obtenir de bons résultats en calcul différentiel, et la compatibilité de ces
résultats avec les intégrales de chemin. On souhaiterait transporter ces résultats au contexte
des surfaces de Riemann. Cependant, on verra que le concept de fonction holomorphe n’est pas
la généralisation idéale, ce qui nous amènera à étudier les formes différentielles.

5. Cela signifie que si p1 : X̃1 → X et p2 : X̃2 → X sont deux revêtements universels de X, alors il existe un
homéomorphisme f : X̃1 → X̃2 tel que p2 ◦ f = p1. (Rappelez la catégorie de l’exemple A.2.)
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Soit X une surface de Riemann et f : X → C une fonction holomorphe. On peut penser à
f comme étant une collection de fonctions holomorphes fα := f ◦ ϕ−1

α : ϕα(Uα) → C sur des
ouverts du plan complexe, où ϕα : Uα → C sont des cartes d’un atlas de X. Ces fonctions sont
compatibles dans le sens suivant : si ϕα : Uα → C et ϕβ : Uβ → C sont des cartes, alors

fβ(z) = fα(ϕα ◦ ϕ−1
β (z))

pour tout z ∈ ϕβ(Uα ∩ Uβ). Puisque f est une fonction holomorphe, on attendrait à ce que sa
dérivée f ′ le soit aussi. Cependant, la fonction f ′ ne satisfait pas la condition de compatibilité
que l’on vient d’écrire. En fait, le théorème de dérivation des fonctions composées montre que

f ′β(z) = f ′α(ϕα ◦ ϕ−1
β (z))(ϕα ◦ ϕ−1

β )′(z).
Un problème similaire se produit lors de la tentative d’intégration d’une fonction méro-

morphe. La définition naturelle de
∫
γ f , où γ est un chemin dans X, serait∫
γ
f :=

∫
ϕα◦γ

fα(z) dz.

Cette définition a plusieurs problèmes. Même si le chemin γ est suffisamment petit pour qu’il
soit dans Uα, la valeur de l’intégrale dépend du choix de la carte ϕα, ce qui n’est certainement
pas souhaitable.

Pour résoudre tous ces problèmes, on va utiliser un nouvel objet dans X : les formes diffé-
rentielles.
Définition 1.15 — 1-formes différentielles. Une 1-forme holomorphe ω sur X est une collec-
tion d’expressions fα dzα pour chaque carte ϕα : Uα → C de X, où fα sont des fonctions
holomorphes sur ϕα(Uα), qui obéissent aux conditions de compatibilité

fβ(z) = fα(ϕα ◦ ϕ−1
β (z))(ϕα ◦ ϕ−1

β )′(z)

pour tout pair de cartes ϕα : Uα → C, ϕβ : Uβ → C et z ∈ ϕβ(Uα ∩ Uβ). De même, si les fα
sont des fonctions méromorphes, on dit que ω est une 1-forme méromorphe.

Il existe deux méthodes de base pour créer des 1-formes holomorphes. L’une consiste à
commencer par une fonction holomorphe h et à former sa différentielle dh qui, pour chaque
carte ϕα : Uα → C de X, est donné par la formule

(dh)α := (h ◦ ϕ−1
α )′ dzα = h′α dzα.

Une autre façon est de commencer avec une 1-forme holomorphe existante ω et de la multiplier
par une fonction holomorphe h pour donner une nouvelle 1-forme holomorphe qui, pour chaque
carte ϕα : Uα → C de X, est donné par la formule

(hω)α := (h ◦ ϕ−1
α )′ fα dzα = h′α fα dzα.

Bien entendu, ces constructions permettent également de construire des 1-formes méromorphes.
Les 1-formes holomorphes et les 1-formes méromorphes forment des C-espaces vectoriels, notés,
respectivement, par Ω(X) et MΩ(X).

Il sera généralement utile d’affaiblir les définitions et d’envisager les 1-formes qui ne sont
que C∞. Dans ce cas, au lieu d’écrire les fonctions en termes de parties réelle et imaginaire de
z, on écrira les fonctions en termes de z et de z, ce qui est toujours possible.

22



Formes différentielles

Définition 1.16 Une 1-forme C∞ ω sur X est une collection d’expressions fα dzα + gα dzα
pour chaque carte ϕα : Uα → C de X, où fα et gα sont des fonctions C∞ sur ϕα(Uα), qui
obéissent aux conditions de compatibilité

fβ(z, z) = fα(ϕα ◦ ϕ−1
β (z), ϕα ◦ ϕ−1

β (z))(ϕα ◦ ϕ−1
β )′(z)

et
gβ(z, z) = gα(ϕα ◦ ϕ−1

β (z), ϕα ◦ ϕ−1
β (z))(ϕα ◦ ϕ−1

β )′(z)

pour tout pair de cartes ϕα : Uα → C, ϕβ : Uβ → C et z ∈ ϕβ(Uα ∩ Uβ).

Puisque cette définition implique que les parties dz et dz d’une 1-forme C∞ se transforment
indépendamment, si ω est de la forme fα dzα pour une carte ϕα, alors ω a cette forme pour
tous les cartes. Dans ce cas, on dira que ω est de type (1, 0). De même, une 1-forme C∞ de la
forme gα dzα est dite de type (0, 1). Il est clair que toute 1-forme holomorphe est de type (1, 0).

On note par E (1)(X) le C-espace vectoriel constitué par les 1-formes C∞, par E (1,0)(X) le C-
espace vectoriel constitué par les 1-formes de type (1, 0) et, de même, par E (0,1)(X) le C-espace
vectoriel constitué par les 1-formes de type (0, 1). Bien sûr, E (1)(X) = E (1,0)(X)⊕ E (0,1)(X).

La principale motivation pour définir les objets que l’on étudie dans cette section est la
volonté de généraliser les intégrales de ligne aux surfaces de Riemann. Par exemple, on peut voir
les conditions de compatibilité qui apparaissent dans les définitions des 1-formes différentielles
en tant que manifestation du théorème de changement de variable dans les intégrales de ligne.
Pour étudier les intégrales de surface, on a besoin d’une notion de « produit » de 1-formes à
satisfaisant la condition de compatibilité

fα(z, z) = fα(ϕα ◦ ϕ−1
β (z), ϕα ◦ ϕ−1

β (z))
∥∥∥(ϕα ◦ ϕ−1

β )′(z)
∥∥∥2
.

Heureusement, ce produit n’est rien d’autre que le produit extérieur !
Définition 1.17 — 2-formes différentielles. Une 2-forme C∞ η sur X est un élément de∧2 E (1)(X). De manière équivalente, une 2-forme C∞ η sur X est une collection d’expres-
sions fα dzα ∧ dzα pour chaque carte ϕα : Uα → C de X, où fα sont des fonctions C∞ sur
ϕα(Uα), qui obéissent aux conditions de compatibilité

fα(z, z) = fα(ϕα ◦ ϕ−1
β (z), ϕα ◦ ϕ−1

β (z))
∥∥∥(ϕα ◦ ϕ−1

β )′(z)
∥∥∥2

pour tout pair de cartes ϕα : Uα → C, ϕβ : Uβ → C et z ∈ ϕβ(Uα ∩ Uβ). De même, si les
fonctions fα sont holomorphes / méromorphes, on dira que η est une 2-forme holomorphe /
méromorphe.

Désormais on omettra systématiquement l’indice α dans la notation d’une forme différen-
tielle à la condition qu’il n’y ait aucune possibilité de confusion. Par exemple, on notera une
2-forme tout simplement par η = f dz ∧ dz.

Tout comme on a définit la différentielle d’une fonction holomorphe, on peut généraliser
cette construction et définir la dérivée extérieure d’une forme différentielle.
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Définition 1.18 — Dérivée extérieure. Le dérivée extérieure d est l’opérateur linéaire qui
associe à une fonction C∞ f la 1-forme

df := ∂f

∂z
dz + ∂f

∂z
dz,

à une 1-forme C∞ ω = f dz + g dz la 2-forme

dω :=
(
∂g

∂z
− ∂f

∂z

)
dz ∧ dz

et à une 2-forme η la valeur dη := 0.

D’après le théorème de Schwarz, il est clair que pour tout fonction f , d(df) = 0. Ce fait est
généralement dénoté par l’équation d2 = 0.

Le lecteur attentif a peut-être vu que l’équation définissant dω ressemble aux équations de
Cauchy-Riemann. En fait, la dérivée extérieure d’une 1-forme holomorphe est toujours zéro :

ω = f dz avec f holomorphe =⇒ dω = −∂f
∂z

dz ∧ dz = 0.

Les 1-formes dont la dérivée extérieure est nulle sont si spéciales qu’elles méritent un nom.
Définition 1.19 — 1-formes exactes et fermées. Soit ω une 1-forme C∞. On dit que ω est
fermée si dω = 0 et que ω est exacte s’il existe une fonction C∞ f telle que ω = df .

Bien sûr, comme d2 = 0, toute forme exacte est fermée. Aussi, de la discussion précédente,
on conclut qu’une forme de type (1, 0) est fermée si et seulement si elle est holomorphe.

Finalement, il existe un moyen canonique d’envoyer des formes différentielles d’une surface
de Riemann à l’autre : le tiré-en-arrière. (« Pullback » en anglais.)
Définition 1.20 — Tiré-en-arrière d’une fonction. Soit F : X → Y une application holomorphe
non-constante entre des surfaces de Riemann. Si h : Y → C est une fonction C∞ sur Y , la
fonction F ∗h := h ◦ F : X → C est appelé le tiré-en-arrière de h par F .

Pour définir le tiré-en-arrière des formes différentielles, on fixe une carte ϕα : Uα → U ′α dans
X telle que F (Uα) soit contenu dans le domaine Vβ d’une carte ψβ : Vβ → V ′β en Y . On note
h := ψβ ◦ F ◦ ϕ−1

α l’écriture locale de F dans ces cartes.
Définition 1.21 — Tiré-en-arrière des formes différentielles. Soit ω une 1-forme C∞ sur Y
définie localement par ωβ = fβ dzβ + gβ dzβ. Alors, la 1-forme C∞ sur X définie localement
par

(F ∗ω)α := (F ∗f)α h′ dwα + (F ∗g)α h′ dwα
est appelé le tiré-en-arrière de ω par F . De même, si η est une 2-forme C∞ définie localement
par ηβ = fβ dz ∧ dz, la 2-forme C∞ sur X définie localement par

(F ∗η)α := (F ∗f)α ‖h′‖ dw ∧ dw

est appelé le tiré-en-arrière de η par F .
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Le tiré-en-arrière commute avec la dérivée extérieure. C’est-à-dire que si f est une fonction
C∞ et ω est une 1-forme C∞, on a

F ∗(df) = d(F ∗f) et F ∗(dω) = d(F ∗ω).

Il est également clair que le tiré-en-arrière préserve les classifications des 1-formes : si ω est
holomorphe, alors F ∗ω l’est aussi. Il en va de même pour les 1-formes méromorphes et de type
(1, 0) ou (0, 1).

1.8 Intégration dans les surfaces de Riemann

À cet état, on sait déjà tout ce qu’il faut pour étudier les intégrales sur les surfaces de
Riemann.
Définition 1.22 — Intégrale de chemin. Soit γ : [0, 1] → X un chemin differentiable dans
une surface de Riemann X et ω = f dz + g dz une 1-forme C∞ sur X. Si l’image de γ est
contenue dans le domaine d’une seule carte ϕα : Uα → U ′α, on définit l’intégrale de ω sur γ
par ∫

γ
ω :=

∫
γ∗ϕα

fα dz + gα dz.

Si l’image de γ n’est pas contenue dans aucune carte, on partitionne [0, 1] = [0, a1] ∪ · · · ∪
[an, 1] de sorte que les restrictions γ|[ai,ai+1] aient des images suffisamment petites. L’intégrale
d’une 1-forme méromorphe est définie d’une manière analogue, il faut juste que le chemin γ
n’intersecte pas les pôles de f .

Les conditions de compatibilité des 1-formes sont exactement ce dont on avait besoin pour
que l’intégrale ne dépende pas des cartes choisies. Le lecteur peut également vérifier que l’inté-
grale est indépendante de la partition de [0, 1] choisie.

Plus généralement, on peut envisager des combinaisons linéaires formelles de chemins avec
des coefficients entiers. C’est-à-dire des objets du type

γ :=
n∑
i=1

ciγi,

où ci ∈ Z et γi sont des chemins. On dit alors que γ est une 1-chaîne. L’intégrale d’une 1-chaîne
est définie par linéarité ∫

γ
ω :=

n∑
i=1

ci

∫
γi
ω.

Les 1-chaînes forment un groupe abélien que l’on dénote par C1.
On aimerait également définir les intégrales de surface dans un fermé D de X. Tout comme

il fallait partitionner [0, 1] dans la définition de l’intégrale de chemin pour assurer que chaque
partie du chemin est contenue dans le domaine d’une seule carte, il faudra partitionner D. Il
y a deux façons habituelles de procéder : on peut utiliser les partitions de l’unité par rapport
à la couverture ouverte donnée par les cartes ou l’on peut trianguler D. La première approche
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est plus habituelle dans le contexte des variétés abstraites mais pour notre portée, la seconde
approche est plus appropriée.
Définition 1.23 — Intégrale de surface. Soit D un fermé triangulable d’une surface de Rie-
mann X et η = f dz ∧ dz une 2-forme C∞. Si D est contenu dans le domaine d’une seule
carte ϕα : Uα → U ′α, on définit l’intégrale de η sur D par∫

D
η :=

∫
ϕα(D)

fα dz ∧ dzα = −2i
∫
ϕα(D)

fα(x+ iy, x− iy) dx dy,

où la dernière intégrale est une intégrale de surface dans R2 ∼= C. Si D n’est pas contenu
dans le domaine d’aucune carte, on triangule D pour que chaque triangle soit suffisamment
petit.

Notez que, puisque dz ∧ dz = (dx+ idy)∧ (dx− idy) = (−2i) dx∧ dy, dans la définition de
l’intégrale, on a fait rien d’autre que « effacer les symboles ∧ ».

Tout comme on a fait avec les chemins, on peut envisager des combinaisons linéaires formelles
de fermés triangulables avec des coefficients entiers. C’est-à-dire des objets du type

D :=
n∑
i=1

ciDi,

où ci ∈ Z et Di sont des fermés triangulables. On dit alors que D est une 2-chaîne. L’intégrale
d’une 2-chaîne est définie par linéarité∫

D
η :=

n∑
i=1

ci

∫
Di
η.

Les 2-chaînes forment un groupe abélien que l’on dénote par C2. Par complétude, on définit les
0-chaînes comme étant des combinaisons linéaires formelles de points de X. Le groupe abélien
formé par les 0-chaînes est noté C0.

Maintenant, si T est un triangle dans X complètement contenu dans le domaine d’une
carte, on peut construire un chemin ∂T en traversant la frontière de T dans le sens anti-
horaire, paramétrée par la longueur de l’arc. Cela donne un chemin fermé ∂T sur X. Si D est
un fermé triangulable dans X, on peut décomposer D en triangles {Ti}i=1,...,n et définir

∂D :=
n∑
i=1

∂Ti,

qui est une 1-chaîne sur X, appelée la frontière de D. De même, on définit la frontière d’une
2-chaîne par linéarité.

Par souci d’exhaustivité, la frontière d’un chemin γ est définie comme étant γ(1)−γ(0). On
définit la frontière d’une 1-chaîne en étendant par linéarité. Aussi, on définit la frontière d’une
0-chaîne comme étant la valeur 0.

On peut dorénavant écrire la version de surface de Riemann du théorème de Stokes, une
vaste généralisation du théorème fondamental du calcul.
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Théorème 1.27 — Théorème de Stokes. Soit D une 2-chaîne dans une surface de Riemann
X et ω une 1-forme C∞ sur X. Alors, ∫

∂D
ω =

∫
D

dω.

Démonstration. Par linéarité, il suffit de supposer que D est un triangle inclus dans le do-
maine d’une carte. Dans ce cas, le théorème devient simplement le théorème de Green dans
R2.

Tout comme dans le plan complexe, une intégrale ne change pas lorsque l’on choisit des
chemins homotopes.

Proposition 1.28 Soient γ0 et γ1 des chemins homotopes sur une surface de Riemann X.
Alors, si ω est une 1-forme C∞ fermée (c’est-à-dire que dω = 0), alors∫

γ0
ω =

∫
γ1
ω.

Démonstration. Soit F : I×I → X l’application associé à l’homotopie reliant γ0 et γ1. Alors,
si D est l’image de F , D est triangulable et ∂D = γ1 − γ0. Le théorème de Stokes implique
donc que ∫

γ1
ω −

∫
γ0
ω =

∫
∂D
ω =

∫
D

dω = 0

puisque ω est fermée.

Comme tout 1-forme holomorphe est fermée, la proposition précédente s’applique toujours
dans le cadre des 1-formes holomorphes.

1.9 Homologie et cohomologie

À la base, la topologie algébrique est divisée en deux études principales : l’homologie et
l’homotopie. La section 1.5 était une introduction à l’objet homologique le plus simple (et, sans
doute, le plus important) de tous : le groupe fondamental. On va maintenant nous concentrer
sur l’autre côté de la topologie algébrique.

Lorsque l’on définit la frontière d’une chaîne, il y a 3 opérateurs dénotés généralement de
la même manière :

C2
∂−→ C1

∂−→ C0
∂−→ 0.

On va les différencier momentanément :
C2

∂2−→ C1
∂1−→ C0

∂0−→ 0.
Une observation importante est que la frontière de la frontière est toujours zéro. C’est-à-dire
que ∂1 ◦ ∂2 = ∂0 ◦ ∂1 = 0. Cela implique notamment que im ∂2 n’est pas simplement un sous-
groupe de C1, mais également un sous-groupe de ker ∂1. Cela motive la définition du groupe
d’homologie.

27



Surfaces de Riemann

Définition 1.24 — Homologie. Soit X une surface de Riemann. On définit le groupe d’homo-
logie de X comme étant le groupe abélien

H1(X) := ker ∂1

im ∂2
.

Les éléments du noyau ker ∂1 s’appellent des cycles et les éléments de l’image im ∂2 s’appellent
des bords.

A priori, le groupe d’homologie peut sembler un peu effrayant. On verra cependant qu’il
s’agit d’un objet bien connu !

Théorème 1.29 Soit X une surface de Riemann. Alors on a un isomorphisme de groupes

H1(X) ∼=
π1(X)

[π1(X), π1(X)] .

Croquis de démonstration. L’idée principale de la démonstration de ce théorème est de
fixer un point x0 ∈ X et de voir les lacets dans π1(X, x0) comme des cycles dans ker ∂1. On
obtient ainsi un homéomorphisme h : π1(X, x0) → H1(X). Ce morphisme est surjectif et a
pour noyau le sous-groupe dérivé de π1(X, x0). Le résultat découle alors du premier théorème
d’isomorphisme.

Ce théorème nous permet d’afficher facilement quelques exemples de groupe d’homologie.
� Exemple 1.17 — Sphère à n trous. Soit X = Ĉ \ {p1, . . . , pn} la sphère de Riemann perforée
à n trous. Dans l’exemple 1.13 on a calculé

π1(X) = 〈g1, . . . , gn | g1 · · · gn = e〉.

L’abélianisé de π1(X) est donc tout simplement le groupe abélien engendré par les cycles
f1, . . . , fn−1. Il n’est pas nécessaire de mettre fn car la somme de tous les fi est une bord et est
donc égale à l’élément neutre de H1(X). �

� Exemple 1.18 — Surface de genre g. En fait, on a déjà calculé le groupe d’homologie d’une
surface de Riemann compacte X de genre g dans l’exemple 1.15 ! On a

H1(X) = Z2g.

Le groupe H1(X) est engendré par les cycles a1, b1, . . . , ag, bg qui sont les images de arêtes de
Fg par l’application quotient. On dit que ces cycles sont la base canonique de cycles. �

Considérons une 1-forme C∞ fermée ω. L’intégration de ω nous donne un homomorphisme
du groupe de cycles à C

ker ∂1 → C

γ 7→
∫
γ
ω.
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Par le théorème de Stokes, ∫
∂D
ω = 0

pour tout bord ∂D ∈ im ∂2. La propriété universelle des quotients implique donc que cet
homéomorphisme induit un homéomorphisme∫

−
ω : H1(X)→ C

que l’on appellera l’homomorphisme de période de ω. On peut considérer que son domaine est
soit le groupe d’homologie, soit le groupe fondamental, selon les besoins.

La motivation de ce nom est le fait que si a1, b1, . . . , ag, bg est la base canonique de cycles,
les valeurs

Ai :=
∫
ai
ω, Bi :=

∫
bi
ω

sont appelées périodes de ω. Clairement, l’intégrale de ω dans tout chemin fermé peut être écrite
en termes des périodes. Le fait étonnant est que les intégrales de surface peuvent également
être exprimées en termes de périodes !

Théorème 1.30 — Relations bilineaires de Riemann. Soit X une surface de Riemann compacte
de genre g avec base canonique de cycles a1, b1, . . . , ag, bg. Soient aussi ω, ω′ deux 1-formes
C∞ avec périodes Ai, Bi, A

′
i, B

′
i. Alors∫
X
ω ∧ ω′ =

g∑
i=1

(AiB′i − A′iBi).

Le lecteur intéressé peut trouver une démonstration de ce résultat dans [3].
L’opérateur de frontière ∂ et la dérivée extérieure sont similaires à bien des égards : les deux

agissent sur 3 espaces différents de telle sorte que l’application successive de ces opérateurs
donne toujours la valeur zéro. Autrement dit, d2 et ∂2 sont égaux à l’opérateur nul. On va
maintenant faire une construction analogue à l’homologie en utilisant le dérivée extérieure.
Comme précédemment, il sera utile de distinguer les trois dérivées extérieures :

E (0)(X) d0−→ E (1)(X) d1−→ E (2)(X) d2−→ 0,

où E (k)(X) est le C-espace vectoriel constitué par les k-formes C∞ avec la convention qu’une
0-forme C∞ est simplement une fonction C∞. Notez que l’ordre des flèches est inversé par
rapport au cas d’homologie, ce qui motive le préfixe « co- » dans la définition suivante.
Définition 1.25 — Cohomologie. Soit X une surface de Riemann. On définit la cohomologie
de X comme étant le C-espace vectoriel

H1(X) := ker d1

im d0
= {1-formes fermées}
{1-formes exactes} .

Bien sûr, comme tout 1-forme exacte est fermée, cet espace est bien défini. En général, une
forme fermée n’a pas besoin d’être exacte. La cohomologie mesure exactement combien l’espace
des formes fermées est plus grand par rapport à l’espace des formes exactes.
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�
En fait, il existe plusieurs notions équivalentes de cohomologie sur une surface de
Riemann. Celle que l’on vient de définir s’appelle la cohomologie de De Rham. Comme
la plupart des autres théories de la cohomologie ne produisent que des groupes, il est de
coutume de dire que H1(X) est le groupe de cohomologie de X même s’il a beaucoup
plus de structure.

De même que l’homologie est étroitement liée au groupe fondamental, la cohomologie l’est
également.

Théorème 1.31 Soit X une surface de Riemann. Alors on a un isomorphisme d’espaces vec-
toriels

H1(X) ∼= HomGrp(π1(X),C).

Croquis de démonstration. Soit x0 ∈ X. Étant donné une classe de cohomologie [ω] ∈
H1(X), on définit l’homomorphisme

π1(X, x0)→ C

[γ] 7→
∫
γ̃
ω,

où γ̃ est un chemin differentiable dans la classe d’homologie [γ]. L’application linéaire Φ :
H1(X)→ HomGrp(π1(X),C) ainsi définie est un isomorphisme.

Le calcul explicite des groupes de cohomologie est généralement très difficile. L’objet qui
nous aide à les calculer est la suite de Mayer-Vietoris, qui dépasse notre cadre. Heureusement,
le théorème ci-dessus est suffisant pour calculer les groupes de cohomologie de certains espaces.
� Exemple 1.19 — Sphère de Riemann. Soit X = Ĉ la sphère de Riemann. Puisque Ĉ est sim-
plement connexe, son groupe fondamental est trivial et donc HomGrp(π1(Ĉ),C) l’est également.
On en déduit que H1(Ĉ) est l’espace vectoriel trivial et donc dans Ĉ toute 1-forme fermée est
exacte. �

� Exemple 1.20 — Surface de genre g. Soit X une surface de Riemann compacte de genre g.
Comme C est un groupe abélien, [π1(X), π1(X)] est dans le noyau de tout homomorphisme
π1(X)→ C. La propriété universelle du quotient implique donc que

HomGrp(π1(X),C) ∼= HomGrp(H1(X),C).

Comme H1(X) est isomorphe (comme groupe) à Z2g, il suit que H1(X) ∼= C2g. �

Pour conclure ce chapitre, on verra une variante simple de la notion de cohomologie. Soit
P = {p1, . . . , pn} un sous-ensemble fini de X. On définit E (k)(X,P ) comme étant le sous-
espace vectoriel de E (k)(X) donné par les k-formes qui s’annulent sur P . Ces sous-espaces sont
compatibles avec la dérivée extérieure en ce sens que la dérivée extérieure d’un élément de
E (k)(X,P ) est un élément de E (k+1)(X,P ). Cela nous permet de définir une cohomologie basée
sur la suite

E (0)(X,P ) d0−→ E (1)(X,P ) d1−→ E (2)(X,P ) d2−→ 0.
Pour faciliter la notation, on notera momentanément dk|E(k)(X,P ) par dPk .
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Définition 1.26 — Cohomologie relative. Soit X une surface de Riemann et P un sous-
ensemble fini de X. On définit la cohomologie relative de X modulo P comme étant le
C-espace vectoriel

H1(X,P ) := ker dP1
im dP0

= {1-formes fermées qui s’annulent sur P}
{1-formes exactes qui s’annulent sur P} .

Une propriété fondamentale de la cohomologie relative est le fait que si X est une surface
de Riemann compacte de genre g, alors H1(X, {p1, . . . , pn}) est naturellement isomorphe à
C2g+n−1, comme indique la proposition suivante.

Proposition 1.32 Soit X une surface de Riemann compacte de genre g et {p1, . . . , pn} ⊂ X.
Alors l’application

[ω] 7→
(
A1, B1, . . . , Ag, Bg,

∫
γ2
ω, . . . ,

∫
γn
ω
)
,

où Ai et Bi sont des périodes de ω et γi sont des chemins reliant p1 à pi, est un isomorphisme
d’espaces vectoriels entre H1(X, {p1, . . . , pn}) et C2g+n−1.

Bien que la cohomologie relative soit un objet très courant dans la topologie algébrique,
les ouvrages qui étudient la théorie de De Rham ne citent généralement pas la cohomologie
relative. Le livre [11] est une belle exception.
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2
THÉORIE DE TEICHMÜLLER

2.1 L’espace de modules des tores

La théorie de Teichmüller est, de manière générale, l’étude des collections de surfaces de
Riemann. Étant donné un genre g, on aimerait paramétrer les différentes structures complexes
pouvant être placées sur une surface topologique de genre g. Comme indiqué dans le chapitre
précédent, l’espace de modules de surfaces de genre g,Mg, est l’ensemble de toutes les classes
d’équivalence biholomorphe de surfaces de genre g. Dans cette section, on étudie l’exemple type
qui nous guidera dans les cas les plus généraux : l’espace de modules des tores.

On se demande quand est-ce que deux tores C/Λ et C/Λ′ sont biholomorphes. Notons tout
d’abord que chaque tore complexe est biholomorphe au tore complexe Xτ défini par le réseau
engendré par 1 et τ , où τ est un nombre complexe avec partie imaginaire positive. En effet, si
Λ est engendré par ω1 et ω2, alors z 7→ z/ω1 est un biholomorphisme qui envoie Λ sur le réseau
engendré par 1 et ω2/ω1. Si ce rapport est dans le demi-plan supérieur H, il s’agit de τ ; sinon,
on peut prendre τ = −ω2/ω1. On obtient ainsi un premier résultat :

Proposition 2.1 Tout tore complexe C/Λ est biholomorphe à un tore complexe de la forme
Xτ := C/(Z⊕ τZ), où τ ∈ H.

Bien que la proposition 2.1 simplifie notre étude, elle ne nous donne pas une manière de
dire systématiquement quand C/Λ et C/Λ′ sont biholomorphes. Pour cela, on a besoin d’un
résultat plus fort.

Théorème 2.2 Soient C/Λ et C/Λ′ deux tores complexes. Alors il sont biholomorphes si et
seulement s’il existe un nombre complexe non-nul γ tel que Λ′ = γΛ.

Démonstration. Supposons qu’il existe un biholomorphisme f : C/Λ→ C/Λ′. En composant
avec une translation appropriée sur C/Λ′, on peut supposer que f([0]) = [0]′. Par la formule
de Riemann-Hurwitz, f n’est par ramifié et est donc un revêtement au sens topologique. On
en déduit que la composition f ◦ π : C → C/Λ → C/Λ′, où π : C → C/Λ est l’application
quotient, l’est aussi. Par la propriété universelle du revêtement universel (théorème 1.25), il
existe un revêtement g : C→ C tel que le diagramme

C C/Λ′

C C/Λ

π′

g

π

f
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commute. Comme toutes les autres applications du diagramme sont holomorphes, g l’est aussi.
De plus, puisque f([0]) = [0]′, π′ ◦ g(0) = [0]′ et donc g(0) est un point du réseau. On peut en
fait supposer que g(0) = 0 car la composition avec translation par un point du réseau n’affecte
pas l’application quotient.

Par commutativité du diagramme, g envoie des points d’un réseau à l’autre. D’où g(z +
`) − g(z) est toujours on point de Λ′, disons ω(z, `), pour tout z ∈ C et ` ∈ Λ. Mais Λ′ est
un ensemble discret et C est connexe ; par conséquent, pour ` fixe, ω(z, `) est indépendant de
z. On en déduit que g′(z + `) = g′(z) et donc toutes les valeurs de g′ apparaissent dans le
parallélogramme fondamental de Λ. Comme un tel parallélogramme est compacte, g′ est une
fonction entière bornée. Le théorème de Liouville implique qu’il existe γ ∈ C tel que g(z) = γz
pour tout z ∈ C. Il suit que γΛ = Λ′.

Inversement, si γΛ = Λ′, alors [z] 7→ [γz]′ est bien défini et est le biholomorphisme voulu.

Maintenant on pose la question suivante : quand est-ce que Xτ et Xτ ′ sont biholomorphes ?
Pour cela, il faut et il suffit que l’on ait un nombre complexe γ tel que γ(Z ⊕ τZ) = Z ⊕ τ ′Z.
Dans ce cas, il doit y avoir des entiers a, b, c, d tels que γ = c+dτ ′ et γτ = a+ bτ ′. En éliminant
γ de ces équations, on obtient que τ = (a+ bτ ′)/(c+dτ ′). De plus, pour que γ et γτ engendrent
Z⊕ τ ′Z, le déterminant ad− bc doit être égal à ±1. En fait, il doit être égal à 1, car τ et τ ′ se
trouvent dans le demi-plan supérieur H. Ces conditions sont également clairement suffisantes.

En d’autres termes, le groupe SL2(Z) des matrices 2×2 à coefficients entiers et déterminante
unitaire agit sur le demi-plan supérieur H de sorte que deux tores Xτ et X ′τ sont biholomorphes
si et seulement si τ et τ ′ sont sur la même orbite. On obtient ainsi le résultat voulu.

Théorème 2.3 L’espace de modules des toresM1 est identifié au quotient H/ SL2(Z).

En fait, l’espace quotient H/ SL2(Z) est une surface de Riemann biholomorphe à C par le
j-invariant de Felix Klein, l’un des objets les plus intéressants de toutes les mathématiques.
Pour plus d’informations, voir [16], chapitre 6.

On peut également comprendre cette classification du point de vue du groupe fondamental.
Soient Xτ et Xτ ′ deux tores complexes et T un tore topologique (c’est-à-dire un tore complexe
sans son atlas). Prenons x0 = [0] comme point de base du groupe fondamental π1(T, x0) (qui
est à la fois le groupe fondamental de Xτ et de Xτ ′). Les segments compris entre 0 et 1 et entre
0 et τ dans C, respectivement, déterminent les lacets Aτ et Bτ dans Xτ .

Aτ

Bτ

x0

Les lacets Aτ et Bτ engendrent le groupe fondamental π1(T, x0). Alors, Z ⊕ τZ est isomorphe
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à π1(T, x0) sous l’homomorphisme de groupe

1 7→ Aτ

τ 7→ Bτ .

De même, Z⊕ τ ′Z est identifié à π1(T, x0) sous l’homomorphisme de groupe 1 7→ Aτ ′ , τ 7→ Bτ ′ .
Alors, une application biholomorphe f : Xτ ′ → Xτ induit un automorphisme f∗ : π1(T, x0) →
π1(T, x0) tel que

f∗([Aτ ′ ]) = [f(Aτ ′)] et f∗([Bτ ′ ]) = [f(Bτ ′)].

Cet automorphisme correspond au isomorphisme f̃ : Z⊕ τ ′Z→ Z⊕ τZ entre réseaux. On peut
considérer ainsi que la différence entre Xτ et Xτ ′ correspond précisément à la différence entre
les générateurs canoniques de π1(Xτ , x0) et de π1(Xτ ′ , x0). Cela motive la définition suivante.
Définition 2.1 — Tore marqué. Soit T un tore topologique. Un tore marqué est une paire
(X,Σ(p)), où X est une surface de Riemann dont la surface topologique sous-jacente est
T et Σ(p) = {[A], [B]} est un système de générateurs du groupe fondamental π1(T, p), qui
s’appelle une marquage.

Pour paramétrer l’ensemble des tores marqués, on a besoin d’une notion d’équivalence dans
les tores marqués et, par conséquent, dans les marquages.

D’abord, deux marquages Σ(p) = {[A], [B]} et Σ(p′) = {[A′], [B′]} sont équivalents lorsqu’il
existe un chemin h de p′ jusqu’à p tel que l’isomorphisme

Ph : π1(T, p)→ π1(T, p′)
[f ] 7→ [h · f · h]

vérifie Ph([A]) = [A′] et Ph([B]) = [B′]. Ensuite, deux tores marqués (X,Σ(p)) et (Y,Σ(p′)), où
Σ(p) = {[A], [B]} et Σ(p′) = {[A′], [B′]}, sont équivalents lorsqu’il existe un biholomorphisme
f : Y → X tel que f∗(Σ(p)) := {f∗([A′]), f∗([B′])} soit équivalent à Σ(p) = {[A], [B]}. On
dénote par [X,Σ(p)] la classe d’équivalence de (X,Σ(p)).
Définition 2.2 On définit l’espace de Teichmüller T1 comme étant l’ensemble des classes
d’équivalence des tores marqués.

Le prochain théorème est la classification que l’on voudrait pour les tores marqués à l’équi-
valence près.

Théorème 2.4 Pour chaque point τ ∈ H, soit Στ = {[Aτ ], [Bτ ]} la marquage sur Xτ pour
laquelle Aτ et Bτ correspondent à 1 et τ , respectivement. Alors [Xτ ,Στ ] = [Xτ ′ ,Στ ′ ] dans T1
si et seulement si τ = τ ′.

Puisque chaque tore marqué est équivalent à [Xτ ,Στ ] pour un certain τ ∈ H, ce théorème
montre que T1 est identifié de façon naturelle à H.

Il y a encore une autre façon d’étudier les tores marqués. Si X et Y sont des surfaces
de Riemann, on dit qu’un difféomorphisme f : X → Y , vu comme une application entre
des variétés réelles, préserve l’orientation si son déterminant Jacobien est partout positif. Les

35



Théorie de Teichmüller

équations de Cauchy-Riemann impliquent immédiatement que tout biholomorphisme préserve
l’orientation.

Soit S un tore 6 et Σ = {[A], [B]} une marquage sur S. Toute paire (X, f) composée d’un
tore complexe X et d’un difféomorphisme f : S → X qui préserve l’orientation détermine
une marquage f∗(Σ) = {f∗([A]), f∗([B])} sur X. Il découle naturellement de cette définition la
question de savoir dans quelles conditions sur les difféomorphismes les tores avec ces marquages
sont équivalents.

Proposition 2.5 Soient X, Y deux tores complexes et f : S → X, g : S → Y deux difféomor-
phismes qui préservent l’orientation. Alors [X, f∗(Σ)] = [Y, g∗(Σ)] dans T1 si et seulement si
g ◦ f−1 est homotope à un biholomorphisme.

Démonstration. Supposons d’abord que [X, f∗(Σ)] = [Y, g∗(Σ)]. Soient (Sτ ′ ,Στ ′) et (Xτ ,Στ )
des tores complexes marqués représentant [S,Σ] et [X, f∗(Σ)] = [Y, g∗(Σ)], respectivement. On
voit alors f et g comme des difféomorphismes Sτ ′ → Xτ . Comme on a vu dans la preuve du
théorème 2.2, par la propriété universelle du revêtement universel (théorème 1.25), il existe des
revêtements f̃ , g̃ : C→ C tels que les diagrammes

C Xτ

C Sτ ′

π′

f̃

π

f

C Xτ

C Sτ ′

π′

g̃

π

g

commutent. On peut supposer que f̃ et g̃ envoient respectivement 0, 1 et τ ′ à 0, 1 et τ . On
obtient donc une homotopie entre f̃ et g̃ en faisant

F̃t = (1− t)f̃ + tg̃, pour t ∈ [0, 1].

Alors Ft([z]) := [F̃t(z)] définit une homotopie entre f et g. On conclut que g ◦f−1 est homotope
à l’identité.

Inversement, supposons que g ◦f−1 : X → Y soit homotope à un biholomorphisme σ : X →
Y . Dans ce cas, il y a une homotopie Ft entre σ ◦ f : S → Y et g : S → Y . Soit p le point
de base de Σ et soit h : I → Y le chemin Ft(p) entre σ ◦ f(p) et g(p). Alors l’isomorphisme
Ph : π1(Y, g(p)) → π1(Y, σ ◦ f(p)) implique que les marquages (σ ◦ f)∗(Σ) et g∗(Σ) sur Y sont
équivalentes, d’où [X, f∗(Σ)] = [Y, g∗(Σ)].

Comme l’on a vu, pour chaque difféomorphisme préservant l’orientation f : S → X, il y
a une marquage canoniquement attachée f∗(Σ) sur X. Inversement, pour chaque tore marqué
(X,Σ(p)), il existe un difféomorphisme préservant l’orientation f : S → X tel que [X,Σ(p)] =

6. Maintenant il ne suffit pas d’avoir un tore topologique parce que l’on veut étudier des difféomorphismes.
Dans ce cas, S a une structure de variété mais pas nécessairement une structure de surface de Riemann.
Autrement dit, les fonctions de transition ne doivent pas nécessairement être holomorphes.
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[X, f∗(Σ)]. En fait, si (Sτ ′ ,Στ ′) et (Xτ ,Στ ) sont des tores complexes marqués représentant [S,Σ]
et [X,Σ(p)], respectivement, alors l’application

[z] 7→
[

(τ − τ ′)z − (τ − τ ′)z
τ ′ − τ ′

]
est un difféomorphisme S → X préservant l’orientation. En raison de cette correspondance, on
dit également qu’un difféomorphisme f : S → X préservant l’orientation est une marquage et
que (X, f) est un tore marqué.

En vue de la proposition 2.5, on dit que deux paires (X, f) et (Y, g) sont équivalentes si
g ◦ f−1 est homotope à un biholomorphisme.
Définition 2.3 — Espace de Teichmüller. Soit S un tore. On définit l’espace de Teichmüller de
S comme étant l’ensemble des classes d’équivalence des tores marqués (X, f), où f : S → X
est un difféomorphisme préservant l’orientation. On dénote ce espace par T (S).

Comme avant, on dénote par [X, f ] la classe d’équivalence de (X, f). Clairement, T1 et T (S)
ne sont que des façons différentes de voir le même objet.

Enfin et surtout, comme le groupe SL2(Z) agit sur H, il agit également de manière naturelle
sur T1 en faisant A · (Xτ ,Στ ) := (XA·τ ,ΣA·τ ) pour A ∈ SL2(Z), où l’action sur H est donnée
par (

a b

c d

)
· τ := a+ bτ

c+ dτ
.

D’autre part, le groupe SL2(Z) est isomorphe au groupe Mod(S) de toutes les classes d’homoto-
pie [h] de difféomorphismes h : S → S préservant l’orientation. En utilisant cet isomorphisme,
on définit une action de SL2(Z) ∼= Mod(S) dans T (S) par

[h] · [X, f ] = [X, f ◦ h−1].

Ces actions ont la merveilleuse propriété de « oublier la marquage », dans le sens où

M1 ∼=
T1

SL2(Z)
∼=
T (S)

Mod(S) .

Puisque l’espace de Teichmüller est généralement plus simple que l’espace de modules (par
exemple, l’espace de Teichmüller est toujours une variété, alors que l’espace de modules ne l’est
pas toujours), notre approche dans les sections suivantes consiste à étudier un certain espace
de Teichmüller puis quocienter par un groupe approprié pour obtenir l’espace de modules.

2.2 L’espace de Teichmüller des surfaces compactes

En fait, on a déjà fait tout le travail difficile. Les définitions qui ont fonctionné dans l’exemple
type des tores fonctionnent toujours pour des surfaces compactes de genres arbitraires. Ainsi,
cette section est beaucoup plus expositive que déductive. Comme auparavant, on va construire
l’espace de Teichmüller de deux manières. Commençons en considérant les systèmes de généra-
teurs du groupe fondamental.
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Définition 2.4 — Surface marquée. Soit R une surface topologique de genre g. Une surface
de Riemann marquée est une paire (X,Σ(p)), où X est une surface de Riemann dont la
surface topologique sous-jacente est R et Σ(p) = {[A1], [B1], . . . , [Ag], [Bg]} est un système
de générateurs du groupe fondamental π1(R, p), qui s’appelle une marquage.

Comme précédemment, on a besoin d’une notion d’équivalence de surfaces marquées et
donc de marquages. D’abord, deux marquages Σ(p) = {[A1], [B1], . . . , [Ag], [Bg]} et Σ(p′) =
{[A′1], [B′1], . . . , [A′g], [B′g]} sont équivalents lorsqu’il existe un chemin h de p′ jusqu’à p tel que
l’isomorphisme

Ph : π1(R, p)→ π1(R, p′)
[f ] 7→ [h · f · h]

vérifie Ph([Ai]) = [A′i] et Ph([Bi]) = [B′i] pour tout i ∈ {1, . . . , g}. Ensuite, deux surfaces de
Riemann marquées (X,Σ(p)) et (Y,Σ(p′)) sont équivalents lorsqu’il existe un biholomorphisme
f : Y → X tel que f∗(Σ(p)) := {f∗([A′1]), f∗([B′1]), . . . , f∗([A′g]), f∗([B′g])} soit équivalent à
Σ(p) = {[A1], [B1], . . . , [Ag], [Bg]}. On dénote par [X,Σ(p)] la classe d’équivalence de (X,Σ(p)).
Définition 2.5 — Espace de Teichmüller. On définit l’espace de Teichmüller Tg comme étant
l’ensemble des classes d’équivalence des surfaces de Riemann de genre g marquées.

La seconde approche est donnée en considérant des difféomorphismes préservant l’orienta-
tion. Soit S une surface différentielle de genre g. On considère les paires (X, f), où X est une
surface de Riemann de genre g et f : S → X est un difféomorphisme qui préserve l’orientation.
Comme avant, on dit également qu’un difféomorphisme f : S → X préservant l’orientation est
une marquage et que (X, f) est une surface de Riemann marquée. Deux paires (X, f) et (Y, g)
sont équivalents si g ◦ f−1 est homotope à un biholomorphisme. On note par [X, f ] la classe
d’équivalence de (X, f).
Définition 2.6 — Espace de Teichmüller. Soit S une surface différentielle de genre g. On
définit l’espace de Teichmüller de S comme étant l’ensemble des classes d’équivalence des
surfaces de Riemann marquées (X, f), où f : S → X est un difféomorphisme préservant
l’orientation. On dénote ce espace par T (S).

Comme dans le cas des tores, les deux espaces de Teichmüller Tg et T (S), pour une surface S
de genre g, sont naturellement identifiés. En d’autres termes, l’application [X, f ] 7→ [X, f∗(Σ)],
où Σ = {[A1], [B1], . . . , [Ag], [Bg]} est une marquage fixée de S, est bien définie et bijective. La
démonstration de ce fait n’est pas aussi simple dans le cas général que dans le contexte des
tores et sera donc omise. Le lecteur intéressé peut le consulter sur [15].

Enfin, l’espace de Teichmüller T (S) est doté d’une action canonique. Considérons le groupe
Mod(S), appelé en anglais « Mapping Class Group », constitué de tous les difféomorphismes
préservant l’orientation modulo homotopie. Un élément [h] ∈ Mod(S) agit sur T (S) par [h] ·
[X, f ] = [X, f ◦ h−1].

Puisque deux éléments de T (S) sont dans la même orbite de Mod(S) exactement quand
leurs marquages sont équivalentes, deux éléments de l’espace des orbites T (S)/Mod(S) sont
égaux si et seulement si les surfaces de Riemann sont biholomorphes. En d’autres termes, on
obtient l’espace de modulesMg.
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Les deux espaces T (S) et Mg peuvent naturellement être vus comme ouverts de C3g−3,
pour g > 1. De plus, T (S) a une structure de variété complexe de dimension 3g − 3. D’autre
part,Mg n’est pas une variété car il présente des singularités.

2.3 Différentielles abéliennes et stratification

Dorénavant on étudiera une variante de l’espace des modules des surfaces compactes. Au lieu
de considérer les paires (X, f), où f est un difféomorphisme préservant l’orientation, considérons
les paires (X,ω), où ω est une 1-forme holomorphe non-nulle (dans ce contexte il est habituel
d’appeler les 1-formes holomorphes par différentielles abéliennes). 7

On note Lg l’ensemble des paires (X,ω) oùX désigne une surface de Riemann de genre g et ω
est une 1-forme holomorphe non-nulle sur X. Si S est une surface de genre g, le groupe Mod(S)
agit sur Lg de façon naturelle. Un élément [h] ∈ Mod(S) agit sur une surface de Riemann X de
la façon suivante : si {ϕα |α ∈ A} est l’atlas maximal sur X, on définit [h] ·X comme la surface
de Riemann qui a la même surface topologique sous-jacente mais {h◦ϕα |α ∈ A} comme atlas.
Enfin, l’action de Mod(S) sur Lg est donnée par

[h] · (X,ω) := ([h] ·X, h∗ω).

On définit ainsi l’espace de modules des différentielles abéliennes.
Définition 2.7 — Espace de modules des différentielles abéliennes. L’espace de modules des
différentielles abéliennes est l’espace des orbites Lg/Mod(S). On le dénote par Hg.

Étant donné une différentielle abélienne ω sur une surface de Riemann X, la formule de
Riemann-Hurwitz (théorème 1.21) implique que la somme des ordres des zéros de ω vaut 2g−2.
En écrivant ces valeurs par ordre décroissant, on obtient une liste κ = (κ1, . . . , κn) des ordres
des zéros de ω.

Alors pour chaque liste κ = (κ1, . . . , κn) telle que κ1 + . . . + κn = 2g − 2, on définit L(κ)
comme étant le sous-ensemble de Lg consistant en toutes les différentielles abéliennes dont la
liste des ordres de ses zéros coïncide avec κ.

On peut montrer que si h est un difféomorphisme préservant l’orientation, alors h∗ω et ω
ont les mêmes ordres des zéros. Cela nous permet de passer au quotient.
Définition 2.8 — Strate. Soit κ = (κ1, . . . , κn) une liste telle que κ1 + . . . + κn = 2g − 2.
On dénote l’espace des orbites L(κ)/Mod(S) par H(κ). On dit que les sous-ensembles H(κ)
sont des strates de l’espace de modules des différentielles abéliennes.

Par définition,
Hg =

∐
κ1+...+κn=2g−2

H(κ1, . . . , κn).

Cette nomenclature est donnée par le fait que les H(κ) partitionnent l’espace de modules des
différentielles abéliennes de sorte que chaque H(κ) ait une dimension différente.

7. Comme toute différentielle abélienne est définie sur une surface de Riemann, on omettra X de la paire s’il
n’y a pas de risque d’interprétation erronée.
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2.4 Surfaces de translation

Il existe un point de vue alternative à l’espace Lg qui facilite grandement la compréhension.
Étant donné une pair (X,ω), où X est une surface de Riemann de genre g et ω est une diffé-
rentielle abélienne non-nulle sur X, soit P l’ensemble de zéros de ω. On verra que ω détermine
de façon canonique un atlas sur la surface perforée X \ P .

Étant donné un point p ∈ X \ P , soit Up un voisinage connexe par arcs de p. Alors l’appli-
cation ϕp : Up → C, ϕp(x) :=

∫ x
p ω, obtenue en intégrant ω sur un chemin allant de p jusqu’à

x, est indépendante du chemin choisi. (Proposition 1.28.) De plus, en réduisant le domaine et
le codomaine si nécessaire, cette application est un homéomorphisme et donc une carte centrée
en p.

p

x

Up

On conclut que la famille {(Up, ϕp)|p ∈ X\P} est un atlas sur X\P . Cet atlas est important
précisément parce que l’égalité

∫ x
p ω =

∫ x
q +

∫ q
p ω, qui vaut pour les chemins suffisamment petits,

implique que les fonctions de transition sont encore plus régulières qu’une fonction holomorphe ;
elles sont des translations de la forme ϕp ◦ ϕ−1

q (z) = z + c, où c =
∫ q
p ω est une constante.

En outre, le théorème de Riemann sur les singularités apparentes implique que cet atlas
peut être étendu à X de telle sorte que le tiré-en-arrière de zk dz par une carte centrée sur un
zéro p d’ordre k (y compris le cas k = 0) soit exactement ω.

Une famille maximale de cartes compatibles sur une surface topologique S, dont les fonctions
de transition sont données par les translations du plan complexe, en dehors d’un ensemble fini
de points, est appelée une structure de surface de translation sur S.

En d’autres termes, on a vu que tout différentielle abélienne non-nulle ω donne lieu à une
structure de surface de translation telle que ω est localement le tiré-en-arrière de la 1-forme
holomorphe canonique dz sur C. En revanche, chaque structure de translation détermine une
surface de Riemann (puisque translations sont toujours holomorphes) et une différentielle abé-
lienne non-nulle ω donné par le tiré-en-arrière de dz par les cartes de la structure de translation.
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On obtient ainsi que :

Proposition 2.6 L’ensemble Lg est canoniquement identifié à l’ensemble de tous les structures
de surface de translation sur une surface topologique S de genre g.

En fait, il existe un moyen simple d’obtenir un grand nombre de surfaces de translation.
� Exemple 2.1 Considérons une collection v1, . . . , vn de vecteurs dans R2 ∼= C. D’abord on
construit une ligne brisée en plaçant les vecteurs dans l’ordre, l’un après l’autre. Ensuite, on
fait une seconde ligne brisée commençant au même point que précédemment mais en plaçant
les vecteurs dans l’ordre vσ(1), . . . , vσ(n), où σ ∈ Sn est une permutation.

•

•

•

•

•

•

•

•

v4

v3

v2

v1

v1

v2

v3

v4

Supposons que ces deux lignes délimitent un polygone. Dans ce cas, en identifiant les vecteurs
égaux par des translations, on obtient une structure de surface de translation sur la surface
quotient. C’est le cas des tores complexes, par exemple. �

2.5 Surfaces à petits carreaux

Dans cette section, on étudiera un cas particulier de structure de surface de translation
qui est suffisamment général pour être utile et suffisamment particulier pour être simple et
compréhensible à plusieurs points de vue. Au lieu d’identifier les côtés parallèles des polygones,
comme dans l’exemple 2.1, on va identifier les côtés parallèles des ensembles de carrés dans le
plan.
Définition 2.9 — Surface à petits carreaux. Une surface à petits carreaux est une surface de
Riemann obtenue à partir d’une collection finie de carrés unitaires de R2 après l’identification
des paires de côtés parallèles par translations.

Bien sûr, le tore carré C/(Z ⊕ iZ) est une surface à petits carreaux. Un exemple un peu
plus complexe est celui de l’exemple 1.8.

Le fait de définir les surfaces de Riemann à partir de collections finies de carrés nous permet
d’étudier les surfaces à petits carreaux (et même l’espace de modules de différentielles abé-
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liennes) à l’aide de méthodes combinatoires. On peut énumérer les carrés de 1 à n et dire que
d(i) est le carré à droite de i et que s(i) est le carré supérieur à i. Le fait qu’une surface de
Riemann est toujours connexe équivaut à imposer que d et s doivent agir de manière transitive
(définition A.18) sur {1, . . . , n}. On obtient ainsi une définition équivalente.
Définition 2.10 — Surface à petits carreaux. Une surface à petits carreaux est une paire de
permutations (d, s) ∈ Sn × Sn agissant transitivement sur {1, . . . , n}.

� Comme l’on peut numéroter les carrés de plusieurs façons différentes, deux paires
(d, s) et (d′, s′) génèrent la même surface si et seulement s’il existe une permutation
σ ∈ Sn telle que (d′, s′) = (σdσ−1, σsσ−1).

La surface de l’exemple 1.8 sera notre exemple type.
� Exemple 2.2 Énumérons les carrés de la surface de l’exemple 1.8 :

1

2 3
.

Le carré à droite de 1 est lui-même et le carré au-dessus est 2. C’est-à-dire que d(1) = 1 et
s(1) = 2. Pareillement, d(2) = 3, s(2) = 1, d(3) = 2 et s(3) = 3. �

Tout comme dans l’exemple 1.8, l’angle autour d’un sommet sur une surface à petits carreaux
est généralement un multiple non-trivial de 2π. (Cela reflète le fait que l’application quotient
est ramifiée à ces points.) On dit que ces points sont des singularités coniques.

En tant que surfaces de translation, les surfaces à petits carreaux ont une différentielle
abélienne naturellement associé ω = dz, qui est définie globalement parce que les fonctions de
transition sont des translations. Le fait que l’application quotient ait une singularité conique
d’angle 2π(k + 1) implique que ω a un zéro d’ordre k. La proposition 2.6 permet alors de dire
qu’une surface à petits carreaux ayant des singularités coniques d’angles 2π(κ1 +1), . . . , 2π(κn+
1) est un élément de H(κ1, . . . , κn).

Enfin et surtout, il existe une dernière définition équivalente de surface à petits carreaux.
Définition 2.11 — Surface à petits carreaux. Une surface à petits carreaux est une paire (X, f),
composée d’une surface de Riemann X et d’un revêtement holomorphe f : X → C/(Z⊕ iZ),
où [0] ∈ C/(Z⊕ iZ) est le seul point de branchement.

Étant donné une paire (X, f) comme dans la définition 2.11, les carrés qui apparaissent dans
la définition 2.9 sont exactement les composants connexes de f−1((0, 1)× i(0, 1)). De plus, on
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peut utiliser le revêtement holomorphe f pour obtenir la différentielle abélienne associée à la
surface de translation X :

X C/(Z⊕ iZ)
f

f ∗dz dz
f ∗

.

En d’autres mots, (X, f ∗dz) est une surface de translation obtenue à partir d’une collection
finie de carrés après l’identification des côtés parallèles par translations.

2.6 La mesure de Masur-Veech

L’objectif de cette section est d’étudier une mesure naturelle sur l’espace de modules de
différentielles abéliennes. Notre approche sera analogue à une méthode très concrète qui peut
être utilisée pour calculer des aires sur une hypersurface : soit A ⊂ S2 un sous-ensemble de la
sphère unité de R3.

A Aε

En supposant que l’on sache calculer la mesure de Lebesgue µ de R3, on peut considérer
l’ensemble

Aε := {tx ∈ R3 | x ∈ A, t ∈ (1− ε, 1 + ε)}.
Dans ce cas, la mesure superficielle de A, µs(A), est simplement donnée par 8

µs(A) = d
dεµ(Aε)

∣∣∣∣∣
ε=0

.

Notre plan pour définir la mesure de Masur-Veech sera analogue : on commencera par définir
une mesure naturelle dans l’espace H(κ). Comme dans le cas de R3, cet espace a une mesure
infinie. On définit ensuite une hypersurface analogue à la sphère unité S2 ⊂ R3, qui aura une
mesure superficielle héritée de la mesure définie sur H(κ).

Tout d’abord, l’isomorphisme donné par la proposition 1.32

[ω] 7→
(∫

a1
ω,
∫
b1
ω, . . . ,

∫
ag
ω,
∫
bg
ω,
∫
γ2
ω, . . . ,

∫
γn
ω

)

8. Dans ce cas, on peut le prouver en utilisant le principe de Cavalieri et le théorème de Fubini. Dans le cas
général, ce résultat s’appelle théorème de désintégration de Rokhlin.
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nous permet d’utiliser la mesure de Lebesgue sur C2g+n−1 pour définir une mesure dans l’espace
H1(X, {p1, . . . , pn}) en tant que mesure image.

En fait, cet isomorphisme n’étant pas canonique (on aurait pu choisir une autre base d’ho-
mologie et d’autres chemins reliant p1 aux pi), cette mesure n’est définie qu’à normalisation près.
Pour cette raison, on définit le sous-groupe H1(X, {p1, . . . , pn};Z⊕ iZ) ⊂ H1(X, {p1, . . . , pn})
défini par{

[ω] ∈ H1(X, {p1, . . . , pn})
∣∣∣∣ ∫

γ
ω ∈ Z⊕ iZ pour tout chemin γ soit fermé soit reliant les pi

}
.

Ce sous-groupe est discret et alors on déclare la mesure du domaine fondamental de

H1(X, {p1, . . . , pn})
H1(X, {p1, . . . , pn};Z⊕ iZ)

comme étant égale à 1. On note la mesure ainsi obtenue par µH .
Pour définir une mesure sur H(κ), on veux définir des « cartes » qui envoient un voisinage

de [X,ω] ∈ H(κ1, . . . , κn) vers un ouvert de H1(X, {p1, . . . , pn}). 9 Le choix naturel est

[X,ω] 7→ [ω].

A priori, il peut sembler que cette application ne soit pas bien définie au-delà d’un seul point
dans H(κ1, . . . , κn) car les points proches de [X,ω0] n’ont pas nécessairement les mêmes zéros
de ω0. Cependant, il y a toujours un représentant de [X,ω] qui a les mêmes zéros que ω0. 10

Comme les fonctions de transition entre ces cartes préservent la mesure de Lebesgue (ce
sont des éléments de SLm(C), où m = 2g+ n− 1), la mesure µH induit localement une mesure
µ sur H(κ1, . . . , κn) en tant que mesure image de µH par la réciproque de ces cartes.

Malheureusement, la mesure de H(κ) est toujours infinie, ce qui ne nous permet pas de
prendre des informations à partir des valeurs de µ(H(κ)). On définit donc une hypersurface

H1(κ) := {[X,ω] ∈ H(κ) | S([X,ω]) = 1},

où S : H(κ)→ R est la fonction homogène (de degré 2) 11 définie par

S([X,ω]) := i

2

∫
X
ω ∧ ω.

De manière analogue au cas de la sphère unité dans R3, on peut utiliser la mesure µ,
définie sur H(κ), pour définir une mesure µ1 sur H1(κ). La construction de cette mesure en
détail impliquerait d’entrer dans trop de détails techniques sur le théorème de désintégration de
Rokhlin, ce qui est hors de notre portée. On appelle µ1 la mesure de Masur-Veech, en référence
à Howard Masur et William Veech, qui ont prouvé dans [20, 31] le résultat suivant.

9. Lors de la composition avec l’isomorphisme canonique de H1(X, {p1, . . . , pn}), ces applications deviennent
des vraies cartes.
10. En d’autres termes, il existe toujours un difféomorphisme [h] ∈ Mod(S) tel que h∗ω et ω0 aient les mêmes

zéros.
11. C’est-à-dire que S([X, tω]) = |t|2S([X,ω]).
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Théorème 2.7 — (Masur - Veech). Les volumes des strates H1(κ) par rapport à la mesure
µ1 sont finis.

La suite de notre étude sera consacrée à l’étude des valeurs µ1(H1(κ)). On appelle désormais
ces valeurs volumes de Teichmüller. Dans le chapitre suivant, on verra une méthode géométrique
qui nous permettra de calculer ces valeurs pour κ petit. Cette méthode, bien que capable de
calculer certaines valeurs numériques, ne répond pas à plusieurs doutes théoriques. Pour cela,
on utilisera au chapitre 5 une technique basée sur la théorie des représentations du groupe
symétrique.
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3
L’APPROCHE GÉOMÉTRIQUE AUX VOLUMES

DE TEICHMÜLLER

3.1 La méthode

Dans ce chapitre, on étudiera une méthode développée par Anton Zorich, dans son article
« Square Tiled Surfaces and Teichmüller Volumes of the Moduli Spaces of Abelian Differentials »
[34], qui permet de calculer les volumes de Teichmüller µ1(H1(κ)) pour des petites valeurs de
κ. L’idée principale remonte à Gauss et consiste à approximer la mesure d’un sous-ensemble de
Rn par le nombre de points entiers qu’il contient.

En d’autres termes, pour calculer le volume d’un sous-ensemble A ⊂ Rn, on peut faire une
homothétie de rapport r et compter sur le nombre de points entiers m(r) contenus dans rA.
Ce nombre est asymptotiquement égal à Vol(rA) = Vol(A)rn. Comme la mesure superficielle
de ce sous-ensemble est

dVol(rA)
dr

∣∣∣∣∣
r=1

= nVol(A),

pour calculer la mesure superficielle de A, il suffit de connaître le coefficient dans le terme
principal du développement asymptotique du nombre de points entiers dans rA.

Le contexte des volumes de Teichmüller est analogue : puisque H1(X, {p1, . . . , pn}) est iso-
morphe à C2g+n−1, on utilise le réseau (Z⊕ iZ)2g+n−1 ⊂ C2g+n−1 comme l’ensemble des « points
entiers ». Autrement dit, nos « points entiers » sont les éléments [X,ω] de H(κ1, . . . , κn) dont
l’image par l’isomorphisme H1(X, {p1, . . . , pn})→ C2g+n−1 est un élément de (Z⊕ iZ)2g+n−1.

Dans ce cas, on veut compter le nombre m(r) de différentielles abéliennes « entières » ω
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telles que S([X,ω]) ≤ r, où

S : H(κ)→ R

[X,ω] 7→ i

2

∫
X
ω ∧ ω

est la fonction que l’on a utilisée pour définir l’hypersurface H1(κ). La seule différence avec le
cas précédent est que S est une fonction homogène de degré 2. Alors, pour calculer la mesure
de H1(κ) par dérivation du volume, il faut utiliser un facteur supplémentaire de 2. C’est-à-dire
que

µ1(H1(κ1, . . . , κn)) = 2(2g + n− 1)c,

où c est telle que m(r) ∼ c · r2g+n−1 lorsque r tend vers l’infini.
En fait, ces différentielles abéliennes « entières » sont des objets déjà bien connus du lecteur.

Étant donné une telle différentielle [ω] ∈ H1(X, {p1, . . . , pn}), on peut définir un revêtement
holomorphe fω : X → C/(Z⊕ iZ) en faisant

p 7→
(∫ p

p1
ω
)

mod Z⊕ iZ.

Cet application a exactement n points de ramification : p1, . . . , pn. On conclut que son unique
point de branchement est [0] ∈ C/(Z ⊕ iZ) et donc ω définit une surface à petits carreaux au
sens de la définition 2.11. En revanche, étant donné une surface à petits carreaux (X,ω) au
sens de la définition 2.9, on peut également vérifier que ω est une différentielle « entière ».

En résumant notre discussion, on a obtenu le théorème suivant.

Théorème 3.1 Soitm(r) le nombre de surfaces à petits carreaux avec des singularités coniques
d’angles 2π(κ1 + 1), . . . , 2π(κn + 1) que peuvent être construites avec au plus r carrés. Alors,

µ1(H1(κ1, . . . , κn)) = 2(2g + n− 1)c,

où c est telle que m(r) ∼ c · r2g+n−1 lorsque r tend vers l’infini.

Ce théorème est la base de notre méthode pour calculer certains volumes de Teichmüller :
on calcule le nombre de surfaces à petits carreaux d’un type topologique donné et puis on prend
le terme principal du développement asymptotique.

3.2 Calcul du volume de H1(0)

Pour illustrer l’approche que l’on vient de décrire, on va calculer le volume de Teichmüller
le plus simple : µ1(H(0)), celui de la strate des tores. Dans ce cas, on n’a pas de singularité
conique et donc il suffit de compter le nombre de façons de paver un tore topologique avec au
plus r carrés de telle sorte que les tores complexes résultants ne soient pas isomorphes.

Disons que l’on a pavé un tore avec un nombre arbitraire de carrés, comme dans l’image
suivante.
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En coupant le tore le long d’une ligne verticale, on obtient un cylindre avec v · h carrés, où
v est la quantité de carrés verticalement et h est le nombre de carrés horizontalement.

Du point de vue du groupe fondamental à l’espace de Teichmüller T1, on voit qu’en tournant
ce cylindre et en le rétractant, on obtient un tore non-isomorphe à l’original. Cette procédure
s’appelle un twist de Dehn dans la littérature. 12

Il en résulte que, en fixant v et h, il y a v pavages non-difféomorphes. Ainsi, le nombre de
tores carrés construits en utilisant au plus r carrés est d’environ

∑
v,h∈N
vh≤r

v =
∑
v,h∈N
v≤r/h

v =
∞∑
h=1

br/hc∑
v=1

v ∼
∞∑
h=1

1
2 ·

r2

h2 = r2

2

∞∑
h=1

1
h2 = r2

2 ·
π2

6 .

En fait, certains des tores présents dans la première somme sont isomorphes et sont donc
comptés deux fois, voire plusieurs fois. Néanmoins, puisque cette correction n’affecte pas le
terme principal, on va la négliger.

On obtient ainsi notre premier volume :

12. Son importance réside dans le fait que les twists de Dehn génèrent le groupe Mod(S).
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Théorème 3.2 Le volume de Teichmüller de H(0) est

µ1(H1(0)) = π2

3 .

3.3 Calcul du volume de H1(2)

La même méthode peut être utilisée pour calculer le volume de Teichmüller de H(2). Ce-
pendant, dans ce cas, on a besoin de faire une analyse un peu plus sophistiquée. On va diviser
les surfaces à petits carreaux en deux types pour les compter séparément.

Les surfaces à petits carreaux appartenant à la strateH1(2) ont une seule singularité conique
d’angle 6π. Étant donné une telle surface, on considère les côtés horizontaux (avec l’orientation
héritée du plan) qui sont adjacents à cette singularité dans l’ensemble des carrés qui constituent
cette surface. Dans le cas ci-dessous, tous les sommets sont équivalents et donc on a 3 lacets
formées par les côtés horizontaux non-équivalents situés entre les sommets.

.

L’union de la singularité conique avec ces boucles forme un graphe orienté fini Γ. De plus,
comme ce graphe est dessiné sur une surface orientée, il porte une ordre cyclique, à savoir l’ordre
horaire dans lequel les arêtes sont attachés au sommet. L’orientation des arêtes alterne lorsque
l’on suit l’ordre horaire.
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On définit ensuite une surface orientée à bord S(Γ) en remplaçant chaque arête de Γ par
un rectangle topologique orienté.

L’orientation des arêtes de Γ donne lieu à une orientation de la frontière de S(Γ). Ainsi,
les composantes connexes de la frontière de S(Γ) sont décomposés en deux classes : orientée
positivement et négativement ; positivement lorsque cette orientation est dans le sens horaire
en relation à la surface et négativement quand elle n’est pas. (Une autre façon de voir cela
consiste à vérifier si la surface est à gauche ou à droite du vecteur tangent dans la direction de
l’orientation.)

En nommant notre surface à petits carreaux X, on a que X \ S(Γ) est alors une union de
cylindres, dont chacune des deux bases est identifiée à des composants connexes de la frontière
de S(Γ), l’une orientée positivement et l’autre négativement. On dit que la base qui est identifiée
à la composante connectée orientée positivement est celle du haut et l’autre est celle du bas.

On obtient ainsi un diagramme séparatrice.
Définition 3.1 — Diagramme séparatrice. Un diagramme séparatrice est un graphe orienté
fini Γ avec un ordre cyclique des arêtes à chaque sommet et une décomposition de l’ensemble
des composantes connexes de la frontière de S(Γ) en paires tels que :

1. L’orientation des arêtes est alternée par rapport à l’ordre cyclique ;
2. Dans chaque paire il y a exactement une composante connexe positivement orientée et

une négativement orientée.

A partir du processus décrit ci-dessus, on peut associer un diagramme séparatrice à chaque
surface à petits carreaux. Inversement, à partir de chaque diagramme séparatrice, on obtient une
surface orientable fermée en collant les cylindres topologiques entre les paires de composantes
connexes.

Combinatoirement, il existe trois diagrammes séparatrice possibles avec un sommet et trois
boucles.

D1 D2 D3

51



L’Approche Géométrique aux Volumes de
Teichmüller

Cependant, le premier diagramme n’est pas réalisable par une surface à petits carreaux parce
que sa frontière a 1 composante connexe positivement orientée et 3 composantes négativement
orientées.

On attribue à chaque boucle un nombre réel représentant sa longueur. Aussi, les composante
connexes de la frontière sont également dotées d’une longueur obtenue en faisant la somme des
longueurs de toutes les boucles appartenant à cette composante. Dans le cas d’un diagramme
séparatrice d’une surface à petits carreaux, les longueurs des boucles sont héritées de leurs
longueurs dans le plan complexe. En particulier, ce sont toujours des entiers.

Considérons les surfaces à petits carreaux qui ont pour diagramme séparatrice D2. Ce dia-
gramme définit une surface avec une frontière à deux composantes connexes et est réalisable
pour toutes les valeurs positives des paramètres de longueur. Les deux composantes connexes
de la frontière forment un cylindre dont le périmètre de la base est `1 + `2 + `3, où `1, `2 et `3
sont les longueurs des boucles de D2. On dénote par h la hauteur de ce cylindre.

Comme dans le cas des tores, en fixant h, `1, `2, `3, on peut faire un twist de Dehn et obtenir
`1 + `2 + `3 surfaces non-isomorphes. Ainsi, le nombre de surfaces de ce type en utilisant au
plus r carrés est asymptotiquement égal à

1
3

∑
`1,`2,`3,h∈N

(`1+`2+`3)h≤r

(`1 + `2 + `3),

où on a un facteur de 1/3 pour compenser le fait qu’une permutation cyclique de `1, `2, `3 génère
la même surface.

Le nombre de façons d’écrire un entier v = `1 + `2 + `3 sous la forme d’une somme de 3
entiers est asymptotiquement égal à v2/2. 13 D’où,

1
3

∑
`1,`2,`3,h∈N

(`1+`2+`3)h≤r

(`1 + `2 + `3) ∼ 1
3
∑
v,h∈N
vh≤r

v =
∑
v,h∈N
v≤r/h

v · v
2

2 = 1
6

∞∑
h=1

br/hc∑
v=1

v3

∼ 1
6

∞∑
h=1

1
4 ·

r4

h4 = r4

24

∞∑
h=1

1
h4 = r4

24 ·
π4

90 .

13. Parce que le choix de `1 ∈ {1, . . . , v − 2} et de `2 ∈ {1, . . . , v − `1 − 1} déterminent `3 = v − `1 − `2.
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Considérons maintenant les surfaces à petits carreaux qui ont pour diagramme séparatrice
D3. Ce diagramme définit une surface avec une frontière à deux composantes connexes positive-
ment orientées et deux composantes connexes négativement orientées. On dénote par `1, `2, `3
les longueurs des boucles de D3.

`1

`2

`3

Pour que ce diagramme vienne d’une surface à petits carreaux, il est nécessaire que les
périmètres des deux bases des cylindres soient égaux. Cela implique que `1 = `3. Dans ce cas,
le périmètre de la base de l’un des cylindres est `1 et celui de l’autre est `1 + `2. Soit h1 et h2 les
hauteurs de ces cylindres. Ainsi, comme on peut faire des twists de Dehn sur les deux cylindres,
le nombre de surfaces de ce type en utilisant au plus r carrés est asymptotiquement égal à∑

`1,`2,h1,h2∈N
`1h1+(`1+`2)h2≤r

`1(`1 + `2) =
∑

`1,`2,h1,h2∈N
`1(h1+h2)+`2h2≤r

`2
1 + `1`2.

On va approximer les sommes relatives à `1 et `2 par des intégrales. Soit x1 := `1 · h1+h2
r

et
x2 := `2 · h2

r
. On intègre sur le simplexe

∆ := {x1, x2 ∈ R | x1 + x2 ≤ 1, x1, x2 ≥ 0}.

Notre somme devient alors
∞∑

h1=1

∞∑
h2=1

∫
∆

[(
x1r

h1 + h2

)2
+
(

x1r

h1 + h2

)(
x2r

h2

)](
r

h1 + h2
dx1

)(
r

h2
dx2

)

= r4

 ∫
∆
x2

1 dx1dx2︸ ︷︷ ︸
1/12

·
∞∑

h1=1

∞∑
h2=1

1
h2(h1 + h2)3 +

∫
∆
x1x2 dx1dx2︸ ︷︷ ︸

1/24

·
∞∑

h1=1

∞∑
h2=1

1
h2

2(h1 + h2)2

.
Les séries de la forme

ζ(s, t) :=
∞∑
n=1

∞∑
m=1

1
ms(n+m)t

sont connues dans la littérature sous le nom de fonctions multi-zêta et leurs propriétés sont
toujours à l’étude. Heureusement, les valeurs ζ(1, 3) = π4/360 et ζ(2, 2) = π4/120 sont bien
connues.

En ajoutant la contribution des deux diagrammes et en appliquant le théorème 3.1, on
obtient finalement :
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Théorème 3.3 Le volume de Teichmüller de H(2) est

µ1(H1(2)) = π4

120 .

3.4 Autres résultats

Des calculs similaires à ceux que l’on vient de faire permettent également de calculer d’autres
volumes de Teichmüller µ1(H1(κ)) pour κ petit. En particulier, il est possible de montrer que

µ1(H1(1, 1)) = 1
270π

4 et µ1(H1(3, 1)) = 16
42525π

6.

L’ensemble des résultats obtenus jusqu’à présent nous conduit à conjecturer le résultat
suivant.

Conjecture Les volumes de Teichmüller sont toujours des multiples rationnels de π2g. En
d’autres termes,

µ1(H1(κ1, . . . , κn))π−2g ∈ Q,

où κ1 + · · ·+ κn = 2g − 2.

La suite de notre étude sera consacrée à la démonstration de ce résultat. On étudiera la
théorie des représentations d’un groupe fini (en particulier le cas du groupe symétrique), qui
aboutira à une nouvelle approche des volumes de Teichmüller, permettant de démontrer cette
conjecture.
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4
REPRÉSENTATIONS LINÉAIRES DES

GROUPES FINIS

4.1 Définitions de base et exemples

Soit E un espace vectoriel à dimension finie sur un corps k. On va maintenant nous consacrer
à l’étude des actions d’un groupe fini G sur E. On note que le contexte ici est quelque peu
différent de ce qui a été étudié dans la section sur les actions de groupe : auparavant, la catégorie
étudiée était Set, maintenant ce sera k-Vect. Dans ce cadre, il est usuel de noter Autk-Vect(E)
par GL(E).
Définition 4.1 Une représentation d’un groupe fini G sur un espace vectoriel E est une action

ρ : G→ GL(E).

On appelle dimE le degré de la représentation. Comme avant, on va dénoter ρ(g)(v) par
g · v, où g ∈ G et v ∈ E.

� Il est habituel dans la littérature de noter une représentation uniquement par l’espace
vectoriel E. C’est un fort abus de notation, mais il est déjà tellement consacré qu’il
est nécessaire de le connaître.

Tout ce qui a été étudié dans la section A.7 était dans le cadre C = Set. La première chose
à faire est donc de nous demander comment tout change lorsque nous changeons de catégorie.
En fait, la seule chose qui change est la définition A.21, qui doit maintenant coder l’information
qu’un isomorphisme dans k-Vect a plus de structure qu’un isomorphisme dans Set.
Définition 4.2 Étant donné un groupe G, deux représentations ρ : G → GL(E) et ρ′ : G →
GL(E ′) sont isomorphes s’il existe un isomorphisme d’espaces vectoriels f : E → E ′ tel que
le diagramme

E E ′

E E ′

f

ρ(g)

f

ρ′(g)

commute pour tout g ∈ G. C’est-à-dire, telle que f ◦ ρ(g) = ρ′(g) ◦ f pour tout g ∈ G.
On appellera les applications linéaires f (pas nécessairement bijectives) qui satisfont cette
propriété équivariantes.

Notez que bien que le théorème A.15 n’ait aucun sens dans k-Vect, la formule des classes
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(corollaire A.16) est toujours valide car chaque action de k-Vect est une action de Set.
� Exemple 4.1 — Représentation triviale. Si dimE = 1, on peut identifier GL(E) avec k×, le
groupe multiplicatif des unités de k. Puisque chaque élément de G a ordre fini, les valeurs de
ρ(g), vues comme des éléments de k×, sont des racines de l’unité. Si l’on fait

ρ(g) = 1

pour tout g ∈ G, on obtient une représentation de G appelée représentation triviale. �

� Exemple 4.2 — Représentation régulière. Étant donné un groupe G = {g1, g2. . . . , gn} et un
corps k, on définit l’espace vectoriel k[G] de dimension n = |G| dont une base {eg1 , eg2 . . . . , egn}
est indexé par les éléments de G. Alors, G agit sur k[G] en faisant

ρ : G→ GL(k[G])
g1 7→ ρ(g1),

où ρ(g1) est l’endomorphisme défini sur les éléments de la base par eg2 7→ eg1g2 . Puisque G est
fini, ρ(g1) est toujours un automorphisme de k[G]. En effet, la structure de groupe nous permet
de définir une structure d’algèbre dans k[G], donnée par eg1eg2 7→ eg1g2 . On dira qu’il s’agit de
l’algèbre de groupe de G. �

� Exemple 4.3 — Représentation de permutation. Étant donné un corps k, un ensemble fini
A = {a1, a2. . . . , an} et une action σ : G × A → A, on définit l’espace vectoriel k[A] de
dimension n = |A| dont une base {ea1 , ea2 . . . . , ean} est indexé par les éléments de A. Alors, G
agit sur k[A] en faisant

ρ : G→ GL(k[A])
g 7→ ρ(g).

où ρ(g) est l’endomorphisme défini sur les éléments de la base par ea 7→ eσ(g,a). Bien entendu,
il s’agit d’une généralisation de la représentation régulière. Avec la base donnée, la matrice
représentant ρ(g)

[ρ(g)]xy =

1 si x = g · y
0 sinon

.

Ainsi, il y a exactement un 1 dans chaque ligne et colonne, et 0 partout ailleurs. �

Un corollaire direct des considérations que l’on a fait dans l’exemple 4.3 est le suivant.

Proposition 4.1 Soit k[A] la représentation de permutation associée à un ensemble fini A et
à une action σ : G× A→ A. Alors,

tr ρ(g) = |Ag| = |{a ∈ A | g · a = a}|.

Démonstration. Considérons la matrice de ρ(g) sur la base habituelle. Sa trace est égal au
nombre d’éléments non nuls de la diagonale principale, qui est le nombre d’éléments fixés par
l’action de g.
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4.2 Sous-représentations

Soit ρ : G → GL(E) une représentation and soit F un sous-espace de E. Si g · v ∈ F pour
tout v ∈ F et g ∈ G, on dit que F est stable sous l’action de G.
Définition 4.3 — Sous-représentation. Une sous-représentation de ρ : G → GL(E) est la
représentation obtenue par restriction des ρ(g) à un sous-espace vectoriel F de E stable sous
l’action de G. On dénote cette représentation par ρF : G→ GL(F ).

� Exemple 4.4 On considère la représentation régulière d’un groupe G. Soit F le sous-espace
de k[G] engendré par l’élément

w :=
∑
g∈G

eg.

Comme g · w = w, la restriction de la représentation régulière à F est une sous-représentation
de k[G] isomorphe à la représentation triviale. �

Définition 4.4 — Somme directe. Étant donné une famille finie {ρλ : G → GL(Eλ)}λ∈Λ de
représentations d’un groupe G, on définit leur somme directe par⊕

λ∈Λ
ρλ : G→ GL(E)

g 7→
∑
λ∈Λ

ρλ(g),

où E = ⊕
λ∈ΛEλ. Clairement, chacun des ρλ est une sous-représentation de ⊕λ∈Λ ρλ.

Théorème 4.2 — Maschke. Soit ρ : G→ GL(E) une représentation et soit F un sous-espace
vectoriel de E qui est stable sous l’action de G. On suppose que |G| est inversible en k. Alors,
il existe un supplémentaire F⊥ de F dans E qui est stable sous l’action de G.

L’étude des représentations sur un corps fini dont la caractéristique divise |G| (théorie des
représentations modulaires) est beaucoup plus difficile précisément à cause de l’absence de
ce théorème. Donnons deux preuves : la première, plus élégante, justifie notre notation et la
deuxième est plus générale.

Démonstration du cas k = R,C. Soit 〈·, ·〉 un produit scalaire quelconque sur E. On définit
un nouveau produit scalaire

〈x, y〉G :=
∑
g∈G
〈g · x, g · y〉,

qui satisfait 〈g ·x, g ·y〉G = 〈x, y〉G pour tout x, y ∈ E et g ∈ G. Alors, le complément orthogonal
de F par ce produit scalaire

F⊥ = {v ∈ E | 〈v, x〉G = 0 pour tout x ∈ F}

est un supplémentaire de F qui est stable sous l’action de G.
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Démonstration du cas général. Soit p : E → E la projection de E sur F . On définit un
endomorphisme p̃ : E → E par

p̃ = 1
|G|

∑
g∈G

ρ(g) ◦ p ◦ ρ(g)−1.

Comme im p = F et F est stable sous l’action de G, on conclut que im p̃ ⊂ F . Si w ∈ F , on a
que

p̃(w) = 1
|G|

∑
g∈G

ρ(g) ◦ p ◦ ρ(g)−1(w) = 1
|G|

∑
g∈G

ρ(g) ◦ ρ(g)−1(w) = 1
|G|

∑
g∈G

w = w,

d’où il suit que im p̃ = F . Puisque p̃ ◦ p̃ = p̃, on a que (c’est un exercice classique d’algèbre
linéaire)

E = ker p̃⊕ im p̃ = ker p̃⊕ F.
Enfin, pour montrer que ker p̃ est stable sous l’action de G, il suffit de montrer que p̃(g · v) = 0
pour tout v ∈ ker p̃ et tout g ∈ G. Alors,

p̃(g · v) = 1
|G|

∑
h∈G

ρ(h) ◦ p ◦ ρ(h)−1 ◦ ρ(g)(v) = 1
|G|

ρ(g) ◦
∑
h∈G

ρ(g−1h) ◦ p ◦ ρ(g−1h)−1(v),

qui est égale à ρ(g) ◦ p̃(v). Le théorème suit avec F⊥ := ker p̃.

� Si |G| n’est pas inversible en k, on considère la représentation régulière k[G] et le
sous-espace F ′ := {∑g∈G cgeg ∈ k[G] | ∑g∈G cg = 0}. Le sous-espace F est stable sous
l’action de G mais n’a pas de supplémentaire stable.

� Exemple 4.5 En revenant au contexte de l’exemple 4.4 et de la note ci-dessus, si |G| est
inversible dans k, la représentation k[G] peut être décomposée en

k[G] = F ⊕ F ′ = Vect
∑
g∈G

eg

⊕
∑
g∈G

cgeg ∈ k[G]

∣∣∣∣∣∣
∑
g∈G

cg = 0

 .
Cela implique, dans le langage de la section suivante, que la représentation régulière n’est jamais
irréductible. �

� Exemple 4.6 Soit ρ : G → GL(E) une représentation. On considère le sous-espace EG défini
par

EG := {v ∈ E | g · v = v pour tout g ∈ G}.
Clairement, EG est un sous-espace stable de E. C’est un exemple important d’un sous-espace
stable canoniquement associé à chaque représentation. On va voir bientôt que, si |G| est inver-
sible en k,

dimEG = 1
|G|

∑
g∈G

tr ρ(g)

ce qui va nous aider à compter les représentations irréductibles. �
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4.3 Représentations irréductibles

Définition 4.5 — Représentations irréductibles. Une représentation ρ : G → GL(E) d’un
groupe G est irréductible si E 6= {0} et si les uniques sous-espaces de E stables sous l’action
de G sont {0} et E lui-même.

Théorème 4.3 Soit G un groupe tel que |G| soit inversible en k. Alors, toute représentation
est somme directe de représentations irréductibles.

Démonstration. Soit ρ : G→ GL(E) une représentation linéaire de G. Si cette représentation
est irréductible, il n’y a rien à démontrer. Sinon, on raisonne par récurrence en utilisant le
théorème de Maschke (théorème 4.2). Si dimE = 0, le théorème est évident. On suppose donc
dimE ≥ 1. Le théorème de Maschke implique que E = E1 ⊕ E2, où E1, E2 sont stables sous
l’action de G, dimE1 < dimE et dimE2 < dimE. Par récurrence le résultat suit.

La propriété décrite par le théorème 4.3 est généralement appelée « semi-simplicité ». D’une
certaine manière, elle est analogue à la propriété de nombres entiers d’être des produits de
nombres premiers.

Le prochain théorème est une classification des applications linéaires équivariantes entre
deux représentations irréductibles sur k = C.

Théorème 4.4 — Lemme de Schur. Soient ρ : E → GL(E) et ρ′ : E ′ → GL(E ′) deux
représentations irréductibles sur k = C et f une application linéaire équivariant entre eux.
Alors,

1. Soit f est un isomorphisme, soit f = 0.
2. Si E = E ′ et ρ = ρ′, alors f = λ id pour un certain λ ∈ C.

� La première partie du théorème est valable dans n’importe quel corps. La deuxième
partie vaut dans n’importe quel corps algébriquement clos.

On commence par prouver un lemme qui nous sera très utile.

Lemme 4.5 Soient ρ : E → GL(E) et ρ′ : E ′ → GL(E ′) deux représentations et f une
application linéaire équivariant entre eux. Alors, ker f et im f sont des sous-espaces stables.

Démonstration. Si v ∈ ker f , alors

f(g · v) = g · f(v) = 0,

d’où g · v ∈ ker f . Aussi, si v = f(w) ∈ im f ,

g · v = g · f(w) = f(g · w) ∈ im f.

Le résultat suit.
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Maintenant, la preuve du théorème 4.4 est simple.

Démonstration du Lemme de Schur.
1. Par l’irréductibilité de E, soit ker f = E (c’est-à-dire que f = 0) ou ker f = 0, auquel

cas f est une injection. De même, l’irréductibilité de E ′ implique que im f = 0 (c’est-à-dire que
f = 0) ou im f = E ′, auquel cas f est une surjection. Ainsi, si f n’est pas identiquement nulle,
il doit s’agir d’un isomorphisme.

2. Soit λ une valeur propre de f . C’est-à-dire que f − λ id a un noyau non-nul. On note
aussi que, comme

(f − λ id)(g · v) = f(g · v)− λ(g · v) = g · f(v)− λ(g · v) = g · (f(v)− λv),

l’application linéaire f − λ id est équivariant. Puisque f − λ id est équivariant mais n’est pas
un isomorphisme, la première partie de la démonstration implique le résultat.

Corollaire 4.6 Soit ρ : G→ GL(E) une représentation irréductible sur C d’un groupe abélien
G. Alors, dimE = 1.

Démonstration. Puisque G est abélien, ρ(g)◦ρ(g′) = ρ(g′)◦ρ(g). C’est-à-dire que l’endomor-
phisme ρ(g) est équivariant. D’après le lemme de Schur, ρ(g) = λg id pour un certain λg ∈ C.
D’où on voit que tout sous-espace de E est stable sous l’action de G. L’irréductibilité implique
le résultat.

4.4 Construction de nouvelles représentations

Soient ρ : G → GL(E) et ρ′ : G → GL(E ′) deux représentations d’un groupe G. On a
déjà vu que l’on peut définir une nouvelle représentation ρ ⊕ ρ′ : G → GL(E ⊕ E ′) en faisant
g · (v + v′) := g · v + g · v′. Néanmoins, il y a plus d’opérations que l’on peut faire avec des
espaces vectoriels qu’une somme directe.
Définition 4.6 On définit le produit tensoriel ρ⊗ρ′ : G→ GL(E⊗E ′) de deux représentations
ρ et ρ′ en faisant

g · (v ⊗ v′) := g · v ⊗ g · v′.

Bien entendu, le produit tensoriel d’un nombre fini de représentations est défini exactement
de la même manière.

Dans le cadre de la théorie des représentations, il est assez courant de voir ∧mE et SymmE
comme des sous-espaces vectoriels de E⊗m. Pour cela, notons que le groupe symétrique Sm agit
sur E⊗m de manière naturelle :

pour σ ∈ Sm, σ · (v1 ⊗ . . .⊗ vm) := vσ(1) ⊗ . . .⊗ vσ(m).

Alors, il suit que ∧m
E ∼= {x ∈ E⊗m | pour tout σ ∈ Sm, σ · x = sgn(σ)x}
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et
SymmE ∼= {x ∈ E⊗m | pour tout σ ∈ Sm, σ · x = x}.

Lemme 4.7 Soit ρ : G → GL(E) une représentation. On considère la représentation produit
sur E⊗m. Les sous-espaces ∧mE et SymmE sont toujours stables sous l’action de G.

Démonstration. Soit x ∈ ∧mE et g ∈ G. Alors,

σ · (g · x) = g · (σ · x) = g · (sgn(σ)x) = sgn(σ)g · x.

C’est-à-dire que g ·x ∈ ∧mE et donc ∧mE est stable sous l’action de G. Le même raisonnement
montre que SymmE est stable sous l’action de G.

D’après ce lemme, on peut définir les puissances extérieures et symétriques d’une représen-
tation.
Définition 4.7 Soit ρ : G → GL(E) une représentation d’un groupe G. On définit ses puis-
sances extérieures et symétriques par les sous-représentations de ρ⊗m : G → GL(E⊗m)
induites par les sous-espaces stables ∧mE et SymmE, respectivement. On dénote ces repré-
sentations par ∧m ρ : G→ GL(∧mE) et Symm ρ : G→ GL(SymmE).

Pour la théorie de représentations, est particulièrement important le fait que, si m = 2, on
peut décomposer E⊗2 comme

E ⊗ E =
∧2

E ⊕ Sym2E.

Cela découle de la décomposition
idE⊗2 = f1 + f2,

où f1 et f2 sont définis sur les vecteurs de la base canonique de E⊗2 par

f1(ei ⊗ ej) := 1
2(ei ⊗ ej + ej ⊗ ei), f2(ei ⊗ ej) := 1

2(ei ⊗ ej − ej ⊗ ei)

et étendus par linéarité.
Définition 4.8 Soient ρ : G→ GL(E) et ρ′ : G→ GL(E ′) deux représentations d’un groupe
G et f ∈ Hom(E,E ′). On définit une représentation G→ GL(Hom(E,E ′)) en faisant

(g · f)(v) := g · f(g−1 · v)

pour tout v ∈ E. En d’autres termes, en faisant le diagramme

E E ′

E E ′

f

ρ(g)

g · f

ρ′(g)

commuter.

La définition de la représentation dual est le cas particulier de la définition ci-dessus lorsque
E ′ = k e ρ′ : G→ GL(k) est la représentation triviale.
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Définition 4.9 Étant donné une représentation ρ : G→ GL(E) d’un groupe G, on définit sa
représentation dual ρ∨ : G→ GL(E∨) par

(g · f)(v) := f(g−1 · v),

pour tout v ∈ E

Clairement, cette définition respecte l’isomorphisme canonique entre Hom(E,E ′) et E∨⊗E ′.
C’est-à-dire que

Hom(E,E ′) ∼= E∨ ⊗ E ′

est non seulement un isomorphisme entre espaces vectoriels, mais aussi un isomorphisme entre
représentations.

Proposition 4.8 L’espace des applications linéaires équivariantes entre deux représentations
E et E ′ est l’espace

Hom(E,E ′)G = {f ∈ Hom(E,E ′) | g · f = f pour tout g ∈ G}.

Démonstration. C’est juste une autre façon d’écrire les définitions.

4.5 Théorie des caractères

Comme motivation, commençons par prouver le résultat de l’exemple 4.6.

Proposition 4.9 Soit ρ : G → GL(E) une représentation. On considère le sous-espace EG

défini par
EG := {v ∈ E | g · v = v pour tout g ∈ G}.

Alors, si |G| est inversible en k,

dimEG = 1
|G|

∑
g∈G

tr ρ(g).

Démonstration. On considère l’endomorphisme p : E → E défini par

p(v) := 1
|G|

∑
g∈G

g · v.

Par construction, p|EG = idEG et im p ⊂ EG. On conclut que p est une projection sur EG.
En sachant que la trace d’une projection est égale à la dimension de son image, 14 le résultat
suit.
14. Par le lemme des noyaux, E = ker(p − id) ⊕ ker p. Soit e1, . . . , en une base de E telle que e1, . . . , ek est

une base de ker(p − id) est ek+1, . . . , en est une base de ker p. Alors, p(ei) = ei pour 1 ≤ i ≤ k et p(ei) = 0
pour i > k. Il suit que rg p = k. De plus, la matrice de p dans cette base a 1 dans les k premiers éléments de la
diagonale principale et 0 en dehors, d’où tr p = k.
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Pour simplifier les énoncés, dorénavant on va supposer que k est algébriquement clos, ce qui
implique |G| inversible en k.
Définition 4.10 Soit ρ : G → GL(E) une représentation d’un groupe G. Le caractère de ρ
est la fonction

χρ : G→ k

g 7→ tr ρ(g).

Le caractère d’une représentation irréductible est dénommé un caractère irréductible.

On observe que χρ(eG) = dimE et que χρ(hgh−1) = χρ(g) pour tout g, h ∈ G.

Proposition 4.10 Soient ρ : G→ GL(E), ρ′ : G→ GL(E ′) deux représentations d’un groupe
G et g ∈ G. Alors,

1. χρ⊕ρ′(g) = χρ(g) + χρ′(g),
2. χρ⊗ρ′(g) = χρ(g)χρ′(g),
3. χ∧2ρ(g) = 1

2(χρ(g)2 − χρ(g2)),

4. χSym2 ρ(g) = 1
2(χρ(g)2 + χρ(g2)),

5. χρ∨(g) = χρ(g−1),
6. χHom(E,E′)(g) = χρ(g−1)χρ′(g).

Démonstration. Soient {λi} et {µi} l’ensemble des valeurs propres de ρ(g) et ρ′(g), respecti-
vement. Alors, {λi}∪{µi}, {λiµi} et {λ−1

i } sont les ensembles des valeurs propres de (ρ⊕ρ′)(g),
(ρ ⊗ ρ′)(g) et ρ∨(g), respectivement. Les items 1, 2 et 5 suivent. L’item 6 suit de 2 et 5. Pour
l’item 3, on voit que l’ensemble des valeurs propres de ∧2 ρ(g) est {λiλj | i < j} et

∑
i<j

λiλj = 1
2

(∑
i

λi

)2

−
∑
i

λ2
i

 .
L’item 4 suit de façon similaire.

Comme toujours, on suppose que ρ : G → GL(E) et ρ′ : G → GL(E ′) sont deux représen-
tations d’un groupe G. En combinant les deux résultats de cette section, on voit que

dim Hom(E,E ′)G = 1
|G|

∑
g∈G

χρ(g−1)χρ′(g),

ce qui nous motive à la définition suivante.
Définition 4.11 Une fonction f : G → k qui est constante dans les classes de conjugaison
G, c’est-à-dire que f(hgh−1) = f(g) pour tout g, h ∈ G, est appelée fonction centrale. On
dénote par Ck(G) le k-espace vectoriel de tous les fonctions centrales et on le dote la forme
bilinéaire symétrique 〈·, ·〉 : Ck(G)× Ck(G)→ k définie par

〈f1, f2〉 := 1
|G|

∑
g∈G

f1(g−1)f2(g).

Bien sûr, toute caractère est une fonction centrale.
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Proposition 4.11 La dimension de Ck(G) est égale au nombre de classes de conjugaison de
G.

Démonstration. Soit C une classe de conjugaison de G et f ∈ Ck(G) la fonction définie par

fC(g) =

1 si g ∈ C
0 sinon

.

Alors, l’ensemble

{fC ∈ Ck(G) | C est une classe de conjugaison de G}

est une base de Ck(G). Le résultat suit.

L’importance du prochain théorème ne peut être sous-estimée.

Théorème 4.12 Soient ρ : G → GL(E), ρ′ : G → GL(E ′) deux représentations irréductibles
d’un groupe G. Alors, si ρ et ρ′ sont isomorphes, 〈χρ, χρ′〉 = 1. Sinon, 〈χρ, χρ′〉 = 0. C’est-à-
dire que les caractères irréductibles forment un sous-ensemble orthonormal de Ck(G).

Démonstration. Une autre façon d’énoncer le lemme de Schur est la suivante : si ρ et ρ′ ne
sont pas isomorphes, dim Hom(E,E ′)G = 0. Aussi, dim Hom(E,E)G = 1.

Comme on a vu,
〈χρ, χρ′〉 = dim Hom(E,E ′)G.

Puisque Hom(E,E ′)G ∼= Hom(E,E)G si ρ ∼= ρ′, le résultat suit.

� Soit f : E → E ′ un isomorphisme équivariante. Alors, l’application induite h 7→ f ◦ h
est un isomorphisme d’espaces vectoriels entre Hom(E,E)G et Hom(E,E ′)G.

À partir de ce théorème, on démontre le corollaria qui est la base de toute théorie des
caractères.
Corollaire 4.13 Le nombre de représentations irréductibles à isomorphisme près est toujours
fini.

Démonstration. Ce nombre est inférieur ou égal à dim Ck(G) <∞.

Corollaire 4.14 Une représentation ρ : G → GL(E) est irréductible si et seulement si
〈χρ, χρ〉 = 1.

Démonstration. Soit E = E⊕a1
1 ⊕ . . . ⊕ E⊕amm la décomposition de E en somme directe

de représentations irréductibles donnée par le théorème de Maschke (théorème 4.3). Par la
bilinéarité de 〈·, ·〉 et par le théorème 4.12,

〈χρ, χρ〉 =
〈

m∑
i=1

aiχρi ,
m∑
i=1

aiχρi

〉
=

m∑
i=1

a2
i ,

qui vaut 1 si et seulement s’il n’y a qu’un ai non-nul.
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Dorénavant, si E = E⊕a1
1 ⊕ . . .⊕ E⊕amm , on dénote ρEi : G→ GL(Ei) par ρi.

Corollaire 4.15 Soit E⊕a1
1 ⊕ . . . ⊕ E⊕amm la décomposition de E en somme directe de repré-

sentations irréductibles. Alors, ai = 〈χρ, χρi〉 pour tout i ∈ {1, . . . ,m}.

Démonstration. On calcule 〈χρ, χρi〉 :

〈χρ, χρi〉 =
〈

m∑
j=1

ajχρj , χρi

〉
=

m∑
j=1

aj〈χρj , χρi〉 = ai.

On preuve qu’une représentation est déterminée, à isomorphisme près, par sa caractère.

Corollaire 4.16 Deux représentations ρ : G→ GL(E) et ρ′ : G→ GL(E ′) telles que χρ = χρ′
sont isomorphes.

Démonstration. Soit E = E⊕a1
1 ⊕ . . . ⊕ E⊕amm la décomposition de E en somme directe

de représentations irréductibles donnée par le théorème de Maschke (théorème 4.3). Puisque
χρ = χρ′ ,

ai = 〈χρ, χρi〉 = 〈χρ′ , χρi〉 pour tout i ∈ {1, . . . ,m}.

On en déduit que ai est le nombre de facteurs de E ′ qui sont isomorphes à Ei. C’est-à-dire que
E ′ ∼= E⊕a1

1 ⊕ . . .⊕ E⊕amm = E.

Pour obtenir d’autres corollaires importants, considérons dorénavant la représentation ré-
gulière k[G]. D’abord, on calcule la caractère de k[G]. Puisque dim k[G] = |G|, χk[G](eG) = |G|.
Par définition, ρk[G](g) est toujours une matrice de permutation. Donc, si g ∈ G est tel que
ρk[G](g) a un 1 dans la i-ème position de sa diagonale principale, on a ρk[G](g)egi = egi . Ceci
implique ggi = gi et alors g = eG. On conclut que

χk[G](g) =

|G| si g = eG

0 sinon
.

Soit k[G] = E⊕a1
1 ⊕ . . .⊕E⊕amm la décomposition de la représentation régulière en somme directe

de représentations irréductibles. Par le corollaire 4.15,

ai = 〈χk[G], χEi〉 = 1
|G|

∑
g∈G

χk[G](g−1)χEi(g) = 1
|G|
|G| χEi(eG) = dimEi,

pour tout i ∈ {1, 2, . . . ,m}. Ce résultat nous donne encore trois corollaires importants.

Corollaire 4.17 Soit ρ : G → GL(E) une représentation irréductible de G. Si dimE = n,
alors

k[G] ∼= E⊕n ⊕ E⊕a1
1 ⊕ . . .⊕ E⊕amm .

C’est-à-dire que E apparaît dimE fois dans la décomposition de k[G] en somme directe de
représentations irréductibles.
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Démonstration. En vue du théorème 4.12, on calcule 〈χρ, χk[G]〉 :

〈χρ, χk[G]〉 = 1
|G|

∑
g∈G

χρ(g−1)χk[G](g) = χρ(eG) = dimE.

Il suit que E apparaît dimE fois dans la décomposition de k[G].

À partir de maintenant, si l’on veut trouver les représentations irréductibles d’un groupe G,
le meilleur moyen est de calculer la décomposition de k[G] en somme directe de représentations
irréductibles. Les deux corollaires suivants nous aideront à trouver la décomposition de k[G].

Corollaire 4.18 Soient E1, . . . , Em les représentations irréductibles d’un groupe G. Alors,

|G| =
m∑
i=1

(dimEi)2.

Démonstration. On a |G| = χk[G](eG) = ∑m
i=1 dimEi χEi(eG) = ∑m

i=1(dimEi)2.

Corollaire 4.19 Soient E1, . . . , Em les représentations irréductibles d’un groupe G. Alors, pour
tout élément g 6= eG de G,

m∑
i=1

dimEi χEi(g) = 0.

Démonstration. Si g 6= eG, 0 = χk[G](g) = ∑m
i=1 dimEi χEi(g).

Pour terminer la théorie des caractères, il suffit de prouver la continuité du théorème 4.12 :
les caractères irréductibles ne forment pas seulement un sous-ensemble orthonormal de Ck(G) ;
ils forment une base.
Théorème 4.20 Les caractères irréductibles χρ1 , . . . , χρm d’un groupe G forment une base de
Ck(G). C’est-à-dire que le nombre de représentations irréductibles (à isomorphisme près) est
égal au nombre de classes de conjugaison de G.

D’abord on observe que si f ∈ Ck(G) et ρ : G→ GL(E) est une représentation irréductible
de G alors

ρ̃ :=
∑
g∈G

f(g)ρ(g) ∈ GL(E)

est équivariante. Le lemme de Schur (théorème 4.4) implique que ρ̃ = λ id. En prenant la trace,
on voit que

λ dimE =
∑
g∈G

f(g)χρ(g) = |G| 〈f, χρ∨〉.

Démonstration. Puisque les caractères irréductibles sont orthonormaux, il suffit de montrer
qu’ils engendrent Ck(G). Pour cela, on montre que si 〈f, χρi〉 = 0 pour tout i ∈ {1, . . . ,m},
alors f = 0. 15

15. Soit U le sous-espace de Ck(G) engendré par les caractères irréductibles. Cette raisonnement montre que
U⊥ = {0} et donc Ck(G) = U ⊕ U⊥ = U .
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Si ρi est une représentation irréductible de G, ρ∨i l’est aussi. 16 Donc 〈f, χρ∨i 〉 = 0 pour tout
i ∈ {1, . . . ,m}. On en déduit que

ρ̃i =
(
|G|

dimEi
〈f, χρ∨i 〉

)
id = 0.

Puisque toute représentation est somme directe de représentations irréductibles, on conclut que
ρ̃ = 0 pour toute représentation ρ de G. En particulier, pour la représentation régulière on
calcule ρ̃(eG) pour obtenir ∑

g∈G
f(g)eg = 0.

Comme les eg sont linéairement indépendantes, on conclut que f(g) = 0 pour tout g ∈ G.

4.6 Exemples

La théorie élaborée jusqu’à présent suffit à calculer les représentations irréductibles de plu-
sieurs groupes importants. Dans cette section, on présente quelques exemples de représentations
complexes.
� Exemple 4.7 — Les représentations irréductibles des groupes abéliens. Le corollaire 4.6 est
presque tout ce dont on a besoin pour calculer les représentations des groupes abéliens finis : il
dit que tous ces représentations sont de la forme ρ : G→ C×. Comme tout groupe abélien fini
est une somme directe de groupes cycliques, on calcule d’abord les représentations de Z/nZ.

Chaque élément g ∈ Z/nZ a un ordre fini. Cela implique que ρ(g) est toujours une racine
n-ième de l’unité. Définissons ρkn([m]) := e2πikm/n pour tout k ∈ {0, 1, . . . , n − 1}. Puisque
χkn = ρkn, on vérifie que

〈χkn, χjn〉 = 1
n

∑
[m]∈Z/nZ

χkn([m])χjn([m]) = 1
n

∑
[m]∈Z/nZ

e−2πikm/ne2πijm/n = δkj.

C’est-à-dire que les ρ0
n, . . . , ρ

n−1
n sont les représentations irréductibles de Z/nZ.

Soit alors G un groupe abélien fini. Par le théorème de structure, on peut écrire

G ∼=
Z
n1Z
⊕ · · · ⊕ Z

nrZ
,

où les entiers ni sont des puissances de nombres premiers (pas nécessairement distincts). On
affirme que les représentations irréductibles de G sont ρk1

n1 . . . ρ
kr
nr pour ki ∈ {0, 1, . . . , ni − 1}.

Pour faciliter la notation, on prouve le cas r = 2.

16. En effet, il suffit de montrer que si ρ∨ est irréductible, alors ρ l’est, et le résultat suivra du fait que
(E∨)∨ ∼= E car E a dimension finie. Soit F ⊂ E un sous-espace stable par ρ. Alors, F⊥ = {φ ∈ E∨, φ(x) = 0
∀x ∈ F} est un sous-espace de E∨ stable par ρ∨, et donc soit F⊥ = E∨, ce qui nous entraîne à dire que F = 0,
soit F⊥ = 0 et donc F = E.
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Soit αij : Z/n1Z⊕ Z/n2Z→ C× donnée par αij(g1 + g2) = ρin1(g1)ρjn2(g2). Bien sûr, les αij
sont des homomorphismes. On vérifie que αij = αkl implique i = k et j = l. En effet,

ρin1(g) = αij(g + 1) = αkl(g + 1) = ρkn1(g),

ce qui implique i = k. De même, k = l. Puisque Z/n1Z ⊕ Z/n2Z a |Z/n1Z ⊕ Z/n2Z| = n1n2
représentations irréductibles, il en découle que les αij le sont tous.

En utilisant ce résultat, on peut facilement mettre les valeurs des caractères irréductibles
du groupe de Klein (Z/2Z× Z/2Z), par exemple, dans un tableau :

([0], [0]) ([0], [1]) ([1], [0]) ([1], [1])
α11 1 1 1 1
α12 1 −1 1 −1
α21 1 1 −1 −1
α22 1 −1 −1 1

On appelle un tableau comme celle-ci de table de caractères. Ce tableau contient toutes les
informations sur les représentations irréductibles d’un groupe. �

Les groupes symétriques feront l’objet de toute une section. Cependant, le calcul des repré-
sentations irréductibles de Sn pour n petit est une belle application de la théorie que l’on a vue
jusqu’à présent.
� Exemple 4.8 — Les représentations irréductibles de S3. Le groupe S3 a 3 classes de conjugaison :
id, (12) et (123). C’est-à-dire qu’il faut trouver 3 représentations irréductibles. La représentation
triviale

ρ1 : S3 → C×, σ 7→ 1

est toujours irréductible. Comme décrit dans l’exemple 4.5, la représentation de permutation
C[{1, 2, 3}] (isomorphe à C3) n’est pas irréductible. On peut écrire

C3 = F ⊕ F ′ = Vect (e1 + e2 + e3)⊕
{
c1e1 + c2e2 + c3e3 ∈ C3

∣∣∣ c1 + c2 + c3 = 0
}
,

où le premier terme est isomorphe à la représentation triviale et le second est une représentation
irréductible. Soit ρ2 : S3 → F ′ cette seconde représentation. Pour calculer le caractère de ρ2,
on pourrait choisir une base pour F ′ et écrire les matrices de ρ2 sur cette base. Cependant,
une méthode plus simple consiste à utiliser la proposition 4.10 pour calculer ce caractère en
fonction du caractère de la représentations triviale, déjà connu, et utiliser la proposition 4.1
pour calculer le caractère de la représentation de permutation :

χ2(g) = χC[S3](g)− χ1(g).

Selon le corollaire 4.18, il reste encore une représentation irréductible de degré 1. Il est facile
de montrer qu’il n’y a que deux homomorphismes S3 → C× : l’homomorphisme constant ρ1 et
la signature. On obtient ainsi notre troisième représentation irréductible ρ3 = sgn.

La table de caractères est la suivante :
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id (1 2) (1 2 3)
χ1 1 1 1
χ2 2 0 −1
χ3 1 −1 1

L’orthonormalité de ces caractères confirme notre affirmation selon laquelle ils sont irréduc-
tibles. On appelle ρ2 la représentation standard. �

� Exemple 4.9 — Les représentations irréductibles de S4. Le groupe S4 a 5 classes de conjugaison :
id, (1 2), (1 2 3), (1 2 3 4) et (1 2)(3 4). Les représentations que l’on vient de calculer pour S3
sont naturellement des représentations de S4. Cela nous donne déjà un morceau de la table des
caractères.

id (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
χ1 (triviale) 1 1 1 1 1
χ2 (standard) 3 1 0 −1 −1
χ3 (signature) 1 −1 1 −1 1

Soit d4 et d5 les degrés des représentations restantes. Par le corollaire 4.18, d2
4 + d2

5 = 13,
d’où d4 = 3 et d5 = 2. Obtenir une représentation de degré 3 est facile : puisque ρ2 est de
degré 4− 1 = 3, ρ2⊗ ρ1 et ρ2⊗ ρ3 sont de degré 3. La première option ne fonctionne pas car le
caractère χρ2⊗ρ1 = χ2χ1 est égal à χ2. Néanmoins, χ4 := χρ2⊗ρ3 = χ2χ3 est bien un caractère
irréductible. Le corollaire 4.19 nous donne le caractère χ5 restant.

id (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
χ1 (triviale) 1 1 1 1 1
χ2 (standard) 3 1 0 −1 −1
χ3 (signature) 1 −1 1 −1 1
χ4 = χ2χ3 3 −1 0 1 −1
χ5 2 0 −1 0 2

Cet exemple illustre le pouvoir de la théorie des caractères. Même sans rien connaître sur
la cinquième représentation, on a pu en calculer son caractère. �

� Exemple 4.10 — Les représentations irréductibles du groupe alterné A4. Le groupe A4 (le
sous-groupe de S4 est constitué de permutations paires) a 4 classes de conjugaison : id, (1 2 3),
(132) et (12)(34). Certes, la représentation triviale est toujours irréductible. Pour obtenir deux
autres représentations, on va utiliser une astuce. On s’aperçoit que le sous-groupe

K = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

est normal dans A4. De plus, A4/K ∼= Z/3Z. Alors, si π : A4 → Z/3Z est la projection
canonique et ρ̃ est une représentation non-triviale de Z/3Z, on a que ρ : A4 → C×, défini par
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la commutativité du diagramme
A4 Z/3Z

C×

π

ρ̃
ρ

est une représentation irréductible de A4. (La représentation triviale de Z/3Z deviendrait la
représentation triviale de A4.) On obtient ainsi deux nouvelles représentations irréductibles
ρ2, ρ3. Pour obtenir le caractère de la dernière représentation ρ4, on utilisera à nouveau le
corollaire 4.19.

La table de caractères est la suivante, où on a mis ω = e2πi/3.

id (1 2 3) (1 3 2) (1 2)(3 4)
χ1 1 1 1 1
χ2 1 ω ω2 1
χ3 1 ω2 ω 1
χ4 3 0 0 −1

Comme on verra à nouveau dans l’exemple suivant, l’astuce de « relever » des représentations
(plus simples) d’un quotient est très utile. �

� Exemple 4.11 — Les représentations irréductibles du groupe des quaternions Q. Le groupe des
quaternions est donné par Q = {±1̂,±î,±ĵ,±k̂} où −1̂ commute avec tous les éléments de Q
et î2 = ĵ2 = k̂2 = îĵk̂ = −1̂. Ce groupe est un exemple de groupe hamiltonien non-abélien.
Autrement dit, chaque sous-groupe de Q est distingué même si Q n’est pas abélien. Comme les
classes de conjugaison de Q sont 1̂, −1̂, î, ĵ, k̂, il faut trouver 5 représentations irréductibles.
La même astuce que l’on a fait précédemment nous en donne quatre. On vérifie que

Q

{±1̂}
∼=
Z
2Z ×

Z
2Z

et donc les 4 représentations irréductibles du groupe de Klein sont aussi représentations irré-
ductibles de Q. On obtient ainsi la table de caractères suivante :

1̂ −1̂ î ĵ k̂

χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 1 1 1 −1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

Comme toujours, la dernière représentation a été trouvé en utilisant le corollaire 4.19. �
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Ces exemples illustrent une procédure générale : étant donné un groupe fini G, son sous-
groupe dérivé [G,G] est toujours distingué et le quotient G/[G,G] (appelé l’abélianisé de G)
est toujours abélien. Les représentations de G/[G,G] sont connues et on obtient donc quelques
représentations irréductibles de G.

Lors de la visualisation des tables de caractères obtenues dans cette section, on nous pose
quelques questions : comment construire les représentations de Sn pour n > 4 ? Comment
relier les représentations de Sn à celles de Sm, pour n 6= m ? Pourquoi, dans la plupart de nos
exemples, les caractères ont-ils des valeurs entières ?

Le but des sections suivantes est de répondre à ces questions.

4.7 Représentations induites

Soit G un groupe et H un sous-groupe de G. Supposons que l’on ait une représentation
ρ : G→ GL(E) de G. Pour obtenir une représentation de H, il suffit de faire la restriction de ρ
à H. Cette nouvelle représentation est dénotée ResGH ρ : H → GL(E). La même procédure peut
être effectuée avec des fonctions de classe. C’est-à-dire qu’étant donnée une fonction de classe
f : G → k, sa restriction ResGH f : H → k est définie par ResGH f := f |H . On observe que ces
opérations sont compatibles : ResGH χρ = χResGH ρ.

Notre objectif dans cette section est, étant donné une représentation σ : H → GL(E) de H,
d’obtenir la représentation « la plus générale possible » de G. La propriété universelle ci-dessous
donne un sens précis à cette idée.
Définition 4.12 Soit σ : H → GL(E) une représentation de H. On dit que IndGH σ : G →
GL(Ê), où Ê est un espace vectoriel sur le même corps que E, est la représentation induite
par σ s’il existe iGH ∈ Hom(E, Ê)H telle que pour tout représentation ρ : G → GL(F ) de G
et pour tout f ∈ Hom(E,F )H il existe une unique application f̂ ∈ Hom(Ê, F )G telle que le
diagramme

E Ê

F

iGH

f ∃! f̂

commute.

Comme d’habitude avec les propriétés universelles, si la représentation induite existe, elle
est unique à isomorphisme près.

Théorème 4.21 La représentation induite existe.

Démonstration. Pour construire la représentation induite, on a besoin d’un espace vectoriel
Ê, d’une représentation IndGH σ de G, d’une application linéaire H-équivariante iGH et d’une
application linéaire G-équivariante f̂ .
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• L’espace vectoriel Ê.
Pour chaque classe à gauche τ ∈ G/H, on choisit un représentant gτ quelconque de τ et on
prend une copie gτE de E. Ensuite, définissons l’espace vectoriel Ê par

Ê :=
⊕

τ∈G/H
gτE.

On dénote par gτv, l’élément correspondant à v ∈ E en gτE.
• La représentation IndGH σ : G→ GL(Ê).

Pour chaque classe τ ∈ G/H soit gτ un élément quelconque de τ . Puisque G/H est une partition
de G, pour tout g ∈ G et pour tout τ ∈ G/H, il existent τ ′ ∈ G/H et h ∈ H tels que

ggτ = gτ ′h.

Enfin, on définit l’action induite par

g · (gτvτ ) := gτ ′σ(h)vτ .

• L’application linéaire H-équivariante iGH : E → Ê.
Soit e la classe H ∈ G/H. Alors, on définit l’application linéaire iGH par v 7→ gev. Pour montrer
que cette application est H-équivariante il faut prouver que le diagramme

E Ê

E Ê

iGH

σ(h)

iGH

IndGH σ(h)

commute pour tout h ∈ H. C’est-à-dire que iGH ◦ σ(h) = IndGH σ(h) ◦ iGH . Alors, puisque ge =
H = eG/H ,

IndGH σ(h)(gev) = h · (gev) = geσ(h)v.
• L’application linéaire G-équivariante f̂ : Ê → F .

Dans ce cas, G-équivariance équivaut au diagramme

Ê F

Ê F

f̂

IndGH σ(g)

f̂

ρ(g)

commuter pour tout g ∈ G. Alors, la propriété universelle (f(v) = f̂(gev)) et la G-équivariance
(f̂ ◦ IndGH σ(g) = ρ(g) ◦ f̂) forcent la définition de f̂ :

f̂ (gτv) = f̂(gτ · (g−1
τ · gτv)) = ρ(gτ ) ◦ f̂(g−1

τ · gτv) = ρ(gτ ) ◦ f(v).

L’extension de f̂ sur Ê par linéarité satisfait certainement la propriété universelle et est G-
équivariante.
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On calcule la caractère de IndGH σ :

Proposition 4.22 Soit σ : H → GL(E) une représentation d’un sous-groupe H de G. Alors,

χIndGH σ(g) =
∑

τ∈G/H
χ̂σ(g−1

τ ggτ ) = 1
|H|

∑
s∈G

χ̂σ(s−1gs),

où

χ̂σ(g) :=

χσ(g) si g ∈ H
0 sinon.

Démonstration. Soit d = [G : H] et n = dimE. Pour faciliter la notation, on dénote les
représentants gτ des classes à gauche par t1, . . . , td. Étant donnée une base e1, . . . , en de E, les
nd vecteurs tiej forment une base de Ê. On va trouver la représentation matricielle de IndGH σ(g)
en fonction de la base donnée.

Alors, si vj = tjv il existe i ∈ {1, . . . , d} tel que

IndGH σ(g)vj = g · (tjv) = tiσ(t−1
i gtj)v.

C’est-à-dire que la représentation matricielle de IndGH σ(g) est

σ(t−1

1 gt1) σ(t−1
1 gt2) . . . σ(t−1

1 gtd)
σ(t−1

2 gt1) σ(t−1
2 gt2) . . . σ(t−1

2 gtd)
... ... . . . ...

σ(t−1
d gt1) σ(t−1

d gt2) . . . σ(t−1
d gtd)

 ,

où σ(t−1
i gtj) doit être considéré comme la matrice nulle si t−1

i gtj /∈ H. On en déduit que

χIndGH σ(g) =
d∑
i=1

χ̂σ(t−1
i gti).

Alors, puisque G = ∐d
i=1 tiH,

1
|H|

∑
s∈G

χ̂σ(s−1gs) = 1
|H|

d∑
i=1

∑
h∈H

χ̂σ(h−1t−1
i gtih).

Comme h−1t−1
i gtih ∈ H si et seulement si t−1

i gti ∈ H et χ̂ est une fonction de classe,

1
|H|

d∑
i=1

∑
h∈H

χ̂σ(h−1t−1
i gtih) = 1

|H|

d∑
i=1

∑
h∈H

χ̂σ(t−1
i gti) =

d∑
i=1

χ̂σ(t−1
i gti).

Le résultat suit.
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Ce résultat nous motive à définir des fonctions de classe induites. Si f ∈ Ck(H), on définit
IndGH f ∈ Ck(G) par

IndGH f := 1
|H|

∑
s∈G

f̂(s−1gs), où f̂(g) :=

f(g) si g ∈ H
0 sinon

.

Cette définition implique IndGH χσ = χIndGH σ, comme on avait pour les restrictions. Enfin, on
prouve le résultat le plus important de cette section :

Théorème 4.23 — Réciprocité de Frobenius. Soient f1 : H → k et f2 : G → k des fonctions
de classe. Alors,

〈IndGH f1, f2〉Ck(G) = 〈f1,ResGH f2〉Ck(H).

Démonstration. Comme chaque fonction de classe est une combinaison linéaire de caracté-
ristiques irréductibles et 〈 ·, · 〉 est bilinéaire, on peut supposer que f1 = χ1 et f2 = χ2 sont
des caractères irréductibles. Si χi est la caractère de ρi : G → GL(Ei), on dénote IndGH ρi par
IndGH Ei (pareillement, ResGH ρi par ResGH Ei). Donc, l’égalité que l’on veut prouver équivaut à

dim Hom(IndGH E1, E2)G = dim Hom(E1,ResGH E2)H .

Ce n’est rien d’autre que la propriété universelle appliquée à ρ2 : G→ GL(E2).

Montrons maintenant comment la cinquième représentation de l’exemple 4.11 peut être vue
comme une représentation induite.
� Exemple 4.12 Soit H = 〈̂i〉 un sous-groupe de Q. Alors |H| = 4 et donc [Q : H] = 2.
Considérons la représentation σ : H → C× donnée par σ(̂ik) = ik. Alors, on utilisant la
représentation matricielle de IndGH σ(g) donné dans la démonstration de la proposition 4.22
avec t1 = 1̂ et t2 = ĵ on voit que

IndGH σ(±1̂) = ±
[
1 0
0 1

]
, IndGH σ(±î) = ±

[
i 0
0 −i

]
,

IndGH σ(±ĵ) = ±
[
0 −1
1 0

]
, IndGH σ(±k̂) = ±

[
0 −i
−i 0

]
.

D’où on conclut que le caractère de IndGH σ est χ5. �

4.8 Les représentations du groupe symétrique

Comme on verra, les partitions d’un entier sont étroitement liées aux classes de conjugaison
de Sn. En particulier, chaque partition de n donne de façon bijective une classe de conjugaison
et donc une représentation irréductible de Sn.
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Définition 4.13 — Partitions. Une partition d’un entier n > 0 est une décomposition de cet
entier en une somme d’entiers strictement positifs λ1 + . . . + λ` = n telle que λ1 ≥ λ2 ≥
· · · ≥ λ`. On écrit λ ` n pour dire que λ = (λ1, · · · , λ`) est une partition de n. Le nombre
de partitions de n est dénoté par p(n).

� Exemple 4.13 L’entier 5 a 7 partitions :

5 = 5
= 4 + 1
= 3 + 2
= 3 + 1 + 1
= 2 + 2 + 1
= 2 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1.

Les partitions sont toujours écrites par ordre décroissant et sans zéros. �

On va utiliser les diagrammes de Young pour écrire ces partitions. Étant donné une partition
λ = (λ1, · · · , λ`) de n, son diagramme de Young se compose de λ1 boîtes dans la première ligne,
λ2 boîtes dans la deuxième ligne et ainsi de suite. 17 Le diagramme de Young de (3, 1, 1) est

.

Si λ ` n, la partition transposée λT est la partition dont le diagramme de Young est obtenu du
diagramme de λ en échangeant des lignes et des colonnes.
� Exemple 4.14 La partition transposée de (2, 2, 1) est la partition dont le diagramme est


T

= .

D’où, (2, 2, 1)T = (3, 2). �

Définition 4.14 — Type d’une permutation. Le type de σ ∈ Sn est la partition de n donnée
par les longueurs de cycles dans la décomposition de σ en tant que produit de cycles disjoints.

� Exemple 4.15 On peut écrire la permutation

σ =
(

1 2 3 4 5 6 7 8
8 1 2 7 5 3 4 6

)
∈ S8

comme σ = (18632)(47) et donc le type de σ est (5, 2, 1). (Ne pas oublier que l’on a omis
l’élément 5, qui est fixé par σ.) �

17. Certains auteurs préfèrent écrire les diagrammes de Young avec λ`−i boîtes sur la i-ème ligne.
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La proposition suivante est la raison pour laquelle on étudie les partitions dans ce contexte.

Proposition 4.24 Deux éléments de Sn sont dans la même classe de conjugaison si et seule-
ment s’ils ont le même type.

Démonstration. D’abord on voit que si (a1 · · · ak) est un cycle et σ ∈ Sn,

σ(a1 · · · ak)σ−1 = (σ(a1) · · ·σ(ak)).

Cela peut être prouvé en regardant l’action des deux cotés en σ(ai). On en déduit que

σ(a1 · · · ak) . . . (b1 · · · bs)σ−1 =
[
σ(a1 · · · ak)σ−1

]
. . .
[
σ(b1 · · · bs)σ−1

]
= (σ(a1) · · ·σ(ak)) . . . (σ(b1) · · ·σ(bs)).

Ce résultat implique que deux permutations conjugués ont le même type. En revanche, si

σ1 = (a1 · · · ak) . . . (b1 · · · bs)
σ2 = (a′1 · · · a′k) . . . (b′1 · · · b′s)

sont deux permutations avec le même type, on peut choisir une permutation τ ∈ Sn telle que
a1 = τ(a′1), · · · , ak = τ(a′k), · · · , b1 = τ(b′1), · · · , bs = τ(b′s). Enfin on a σ2 = τσ1τ

−1, donc σ1
et σ2 sont dans la même classe de conjugaison.

Corollaire 4.25 Le groupe Sn a p(n) classes de conjugaison et donc p(n) représentations
irréductibles.

On va maintenant remplir les diagrammes de Young avec des entiers 1, . . . , n.
Définition 4.15 — Tableaux de Young. Soit λ ` n une partition de n. Un λ-tableau t est un
diagramme de Young de λ, rempli avec des entiers 1, · · · , n. Si λ = (λ1, · · · , λ`), le λ-tableau
qui a les entiers 1, · · · , λ1 sur la première ligne, λ1 + 1, · · · , λ1 + λ2 sur la deuxième, et ainsi
de suite est dénoté tλ.

� Exemple 4.16 Ce sont des 6 tableaux de Young associés à la partition (2, 1) de l’entier 3 :

1 2
3

,
1 3
2

,
2 3
1

,
2 1
3

,
3 1
2

,
3 2
1

.

Bien sûr, il y a n! tableaux de Young pour chaque partition λ ` n. �

� Exemple 4.17 Le tableau t(4,2,1) est

1 2 3 4
5 6
7

.

�
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Ce qui nous intéresse vraiment dans cette numérotation, ce sont les numéros de chaque
ligne, mais pas sa position. Cela nous motive à dire que deux tableaux sont équivalents s’ils ont
les mêmes entrées dans chaque ligne. Ce relation ∼ est une relation d’équivalence.
� Exemple 4.18 On a

4 5 6
3 2
1

∼
6 4 5
2 3
1

mais
4 5 6
3 2
1

�
4 2 6
3 5
1

puisque le tableau de gauche a des chiffres {4, 5, 6} dans la première ligne et le tableau de droite
a {4, 2, 6}. �

Définition 4.16 — Tabloïd de Young. Une classe d’équivalence de λ-tableaux est un λ-tabloïd.
L’ensemble des λ-tabloïds est dénoté T λ. On appelle Tλ la classe d’équivalence du tableau
tλ.

Le groupe Sn agit (transitivement) de façon naturelle sur des λ-tableaux en appliquant
σ ∈ Sn aux entrées de la boîte.
� Exemple 4.19

(1 4 3) ·
 4 2 3

1 5

 =
3 2 1
4 5

.

�

Cette action passe bien au quotient. C’est ce que montre la proposition suivante.

Proposition 4.26 Soient t1, t2 des λ-tableaux et σ ∈ Sn. Alors t1 ∼ t2 implique σ · t1 ∼ σ · t2.
C’est-à-dire que l’on peut définir une action sur T λ en faisant σ · [t] = [σ · t].

Démonstration. On veut montrer que deux entiers i, j sont dans la même ligne de σ · t1 si et
seulement s’ils sont dans la même ligne de σ · t2. Alors,

i, j sont dans la même ligne de σ · t1 ⇐⇒ σ−1(i), σ−1(j) sont dans la même ligne de t1
⇐⇒ σ−1(i), σ−1(j) sont dans la même ligne de t2
⇐⇒ i, j sont dans la même ligne de σ · t2.

Le résultat suit.

On calcule alors le stabilisateur de Tλ, où λ = (λ1, · · · , λ`). On veut trouver tous les per-
mutations σ ∈ Sn telles que σ · Tλ = Tλ. Bien sûr on a

StabSn(Tλ) = S{1,··· ,λ1} × S{λ1+1,··· ,λ1+λ2} × . . .× S{λ1+...+λ`−1+1,··· ,n},
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où SX , pour X ⊂ {1, · · · , n}, est défini comme l’ensemble des permutations qui fixent tous les
éléments en dehors de X. Par la formule des classes (Corollaire A.16),

|T λ| = |OSn(Tλ)| =
|Sn|

| StabSn(Tλ)|
= n!
λ1! . . . λ`!

.

Étant donné une partition λ, on l’associera à la représentation de permutation ρλ : Sn →
GL(C[T λ]).
� Exemple 4.20 Si λ = (n − 1, 1), deux λ-tableaux sont équivalents si et seulement s’ils ont la
même entré dans la seconde ligne. C’est-à-dire que chaque élément de T λ peut être identifié par
l’élément de {1, . . . , n} dans la seconde ligne. On en déduit que C[T λ] ∼= C[{1, . . . , n}] = Cn.
L’action est bien sûr donnée par

σ · ei = eσ(i), σ ∈ Sn.

On peut décomposer cette action comme

Cn =
〈

n∑
i=1

ei

〉
⊕
{

n∑
i=1

ciei ∈ Cn
∣∣∣∣∣

n∑
i=1

ci = 0
}
.

Les deux termes sont irréductibles. Le premier est isomorphe à la représentation triviale et le
second est appelé la représentation standard. �

Comme l’on a vu, normalement la représentation ρλ n’est pas irréductible. Cependant,
chaque représentation irréductible de Sn est un constituant de ρλ pour une certaine partition
λ ` n. C’est ce constituant que l’on veut isoler.

Pour simplifier la notation, on écrit Ct pour le stabilisateur des colonnes d’un tableau t,
défini comme StabSn(tT ). Si C1, · · · , Ck sont des colonnes de t, alors

Ct = SC1 × . . .× SCk .

Définition 4.17 — Polytabloïd. Soit λ ` n et t un λ-tableau. L’élément

κt :=
∑
π∈Ct

(sgn π) ρλ(π)[t]

de C[T λ] est appelé le polytabloïd associé à t.

Cette formule doit être interprétée comme suit : étant donné un λ-tableau t, on considère
sa classe d’équivalence [t] et prenons son image (un élément de C[T λ]) par ρλ(π), pour π ∈ Ct.
Enfin, on fait une combinaison linéaire de ces vecteurs avec des poids sgn(π).

�
À ce stade, on a deux interprétations plausibles pour l’expression σ · [t]. Cela peut être
le λ-tabloïd donné par l’action de Sn ou l’image de [t] par la représentation de permu-
tation ρλ(σ). Pour éviter toute confusion, on utilisera systématiquement la première
interprétation.
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Proposition 4.27 Soit σ ∈ Sn et t un λ-tableau. Alors, ρλ(σ)κt = κσ·t.

Démonstration. Par la proposition A.14, Cσ·t = σCtσ
−1. Alors, si τ = σπσ−1,

ρλ(σ)κt = ρλ(σ)
∑
π∈Ct

(sgn π) ρλ(π)[t]


=
∑

τ∈Cσ·t
(sgn σ−1τσ) ρλ(σ)ρλ(σ−1τσ)[t]

=
∑

τ∈Cσ·t
(sgn τ) ρλ(τσ)[t]

=
∑

τ∈Cσ·t
(sgn τ) ρλ(τ)[σ · t].

Le résultat suit.

Cette proposition indique, en d’autres termes, que le sous-espace de C[T λ] engendré par
les polytabloïds κt est stable sous l’action de Sn. C’est-à-dire que ce sous-espace a une sous-
représentation correspondante.
Définition 4.18 — Représentation de Specht. Soit λ ` n. On définit Sλ comme le sous-
espace de C[T λ] engendré par les polytabloïds κt. La sous-représentation correspondante
ψλ : Sn → GL(Sλ) est la représentation de Specht associé à λ.

� Exemple 4.21 Si λ = (n), il n’y a qu’un λ-tabloïd : la classe d’équivalence Tλ du tableau tλ

1 2 3 · · · n .

Aussi, Ct = {id} pour tout λ-tableau t. Alors,

κt = (sgn id) ρλ(id)[t] = Tλ.

Il suit que la représentation de Specht associé à λ est isomorphe à représentation triviale. �

� Exemple 4.22 Soit λ = (1, 1, · · · , 1) une partition de n et t un λ-tableau. Puisque t n’a qu’une
colonne, Ct = Sn. Alors on calcule ψλ(σ)κt pour σ ∈ Sn :

ρλ(σ)κt =
∑
π∈Sn

(sgn π) ρλ(σ)ρλ(π)[t]

=
∑
τ∈Sn

(sgn σ−1τ) ρλ(τ)[t]

= (sgn σ)κt,

où τ = σπ. La représentation ψλ est isomorphe à représentation de la signature, définie par

Sn → GL(C)
σ 7→ (z 7→ (sgn σ)z).

Cette représentation est toujours irréductible. �
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� Exemple 4.23 On revient à l’exemple 4.20 où λ = (n− 1, 1). Soit ti le λ-tableau

1 2 · · · î · · · n
i

,

où î indique que l’élément i a été omis. Pour faciliter la notation, on écrira les éléments e[ti] de
C[T λ] comme ei. Alors, si t est de la forme

i · · ·
j

,

on voit que κt = ei − ej. D’où il suit que

Sλ =
{

n∑
i=1

ciei ∈ Cn
∣∣∣∣∣

n∑
i=1

ci = 0
}

et que la représentation de Specht associé est la représentation standard. �

Le lecteur peut deviner l’étonnant prochain théorème :

Théorème 4.28 Les représentations de Specht ψλ, pour λ ` n, forment un ensemble complet
de représentations irréductibles inéquivalentes de Sn.

La preuve de ce théorème est basée sur une série de lemmes et échappe à la portée de
cet exposé. On pourra la trouver dans la référence [29]. Il est préférable d’étudier quelques
corollaires de ce résultat.
Définition 4.19 — Tableau de Young Standard. Soit λ ` n. On dit qu’un λ-tableau est
standard si les entrées sont croissantes dans les lignes et dans les colonnes.

� Exemple 4.24 Les tableaux

1 2 4
3 5 6
7 8
9

et
1 3 4 7
2 5
6

sont standards tandis que

1 2 4
5 3 6
7 8
9

et
2 3 4 7
1 5
6

ne le sont pas. �

Comme nous l’avons vu dans les exemples 4.21 et 4.22, les polytabloïds sont généralement
linéairement dépendants dans Sλ. Heureusement, cet espace vectoriel a une base naturelle.
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Proposition 4.29 Soit λ une partition de n. Alors

{κt | t est un λ-tableau standard}

est une base de Sλ.

Soit fλ le nombre de λ-tableaux de Young standard. Le résultat précédent a les corollaires
suivants.

Corollaire 4.30 Si λ ` n, alors dimSλ = fλ.

Corollaire 4.31 Si n est un entier positif,∑
λ`n

(fλ)2 = n!,

où la somme est sur toutes les partitions λ de n.

Démonstration. Cela découle des corollaires 4.18 et 4.30.

Étant donnée une partition λ de n, on peut calculer le nombre fλ = dimSλ en utilisant
la formule des équerres (en anglais, « hook-lenght formula ») que l’on verra maintenant. Pour
faciliter la notation, notons par λ une partition de n et son diagramme de Young correspondant.
Définition 4.20 Soit λ un diagramme de Young. Pour une boîte u dans le diagramme (noté
u ∈ λ), on définit l’équerre de u comme étant l’ensemble de tous les boîtes directement
à droite de u ou directement en dessous u, y compris lui-même. Le nombre de l’équerre
s’appelle la longueur de l’équerre de u et est noté hλ(u).

� Exemple 4.25 On considère la partition λ = (5, 4, 3, 1). À gauche on voit l’équerre de u et à
droite on voit les longueurs des équerres de chaque boîte.

u • • •
•
•

8 6 5 3 1
6 4 3 1
4 2 1
1

�

Le résultat suivant sera démontré à l’aide du théorème 4.36 qui sera présenté dans la dernière
section de ce chapitre. Pour cette raison on omettra sa preuve pour l’instant.

Proposition 4.32 — Formule des équerres. Soit λ une partition de n. Alors,

fλ = n!∏
u∈λ hλ(u) .

Dans le cas λ = (5, 4, 3, 1) de l’exemple 4.25, on a

fλ = 13!
8 · 62 · 5 · 42 · 32 · 2 = 15015.
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4.9 Le treillis de Young

Les groupes symétriques portent une inclusion naturelle :

S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sn ⊂ · · · ,

où, pour n ≤ m, on voit σ ∈ Sn comme une permutation de Sm fixant les derniers m − n
numéros. Cela nous amène à étudier la représentation induite de Sn dans Sn+1 et sa restriction
dans Sn−1.
Définition 4.21 — Treillis de Young. Soient λ et µ deux diagrammes de Young. On note
λ→ µ si µ peut être obtenu à partir de λ en ajoutant une seule boîte. Alors, l’ensemble de
diagrammes de Young, avec l’ordre partielle

λ ≤ µ s’il existe ν1, . . . , νn tel que λ→ ν1 → . . .→ νn → µ,

est appelé treillis de Young.

On peut représenter graphiquement le treillis de Young comme suit.

∅
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Évidemment on n’a dessiné que le bas du diagramme. Ce diagramme est généralement appelé
diagramme de Hasse. Dans une série d’articles, Alfred Young a présenté le beau théorème ci-
dessous, qui montre une façon facile de calculer la représentation induite de Sn dans Sn+1 et sa
restriction dans Sn−1.

Nous omettrons la démonstration du prochain théorème énoncé. Le lecteur intéressé pourra
trouver plus de détails sur ce théorème dans [33].

Théorème 4.33 — Règle de branchement de Young. Soit λ ` n. Alors,

ResSnSn−1 ψ
λ ∼=

⊕
µ→λ

ψµ et IndSn+1
Sn
∼=
⊕
λ→µ

ψµ.

� Exemple 4.26 Pour illustrer ce résultat, considérons λ = (5, 4, 2, 2, 1) ` 14. Le diagramme de
Young correspondante est

λ = .

Alors, en élevant une seule boîte on obtient les diagrammes de Young suivantes.

On en déduit que

ResS14
S13 ψ

(5,4,2,2,1) = ψ(4,4,2,2,1) ⊕ ψ(5,3,2,2,1) ⊕ ψ(5,4,2,1,1) ⊕ ψ(5,4,2,2).

De même, en ajoutant une seule boîte on obtient les diagrammes de Young ci-dessous.

Donc,

IndS15

S14 ψ
(5,4,2,2,1) = ψ(6,4,2,2,1) ⊕ ψ(5,5,2,2,1) ⊕ ψ(5,4,3,2,1) ⊕ ψ(5,4,2,2,2) ⊕ ψ(5,4,2,2,1,1).

�

La règle de branchement de Young nous donne une nouvelle façon de regarder la proposition
4.29, qui nous donne une base de Sλ en termes des λ-tableaux standards. Le théorème 4.33
implique que

Sλ ∼=
⊕
µ1→λ

Sµ1 ∼=
⊕

µ2→µ1→λ
Sµ2 ∼= . . . ∼=

⊕
∅→µn→...→µ1→λ

S∅.
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Puisque dimS∅ = 1, on a une correspondance directe entre une base de Sλ et des chemins entre
∅ et λ dans le treillis de Young. Néanmoins, un tel chemin donne lieu à un λ-tableau standard
comme on voit dans l’exemple suivante.
� Exemple 4.27 Considérons le chemin entre ∅ et λ = (4, 2, 1) :

∅→ → → → → → → .

On peut numéroter les diagrammes de gauche à droite :

∅→ 1 → 1
2 →

1 3
2 → 1 3

2 4 →
1 3
2 4
5

→
1 3 6
2 4
5

→
1 3 6 7
2 4
5

.

Bien sûr, le λ-tableau à droite est standard. De façon similaire, chaque λ-tableau standard
donne lieu à un chemin. �

4.10 La formule de Frobenius

Dans cette section, nous étudierons une formule, due à Frobenius, qui relie un problème
combinatoire à la théorie des représentations de groupes finis.

Étant donné un groupe fini G et des classes de conjugaison C1, . . . , Ck, on s’intéresse à
calculer le nombre

N (G;C1, · · · , Ck) := |{(c1, · · · , ck) ∈ C1 × . . .× Ck | c1 . . . ck = eG}|.

On observe d’abord que N (G;C1, · · · , Ck) ne dépend pas de l’ordre des arguments puisque
l’identité cici+1 = ci+1(c−1

i+1cici+1) nous permet d’échanger Ci pour Ci+1.

Théorème 4.34 — Formule de Frobenius. Soit G un groupe fini et des classes de conjugaison
C1, . . . , Ck dans G. Alors,

N (G;C1, · · · , Ck) = |C1| · · · |Ck|
|G|

∑
χ

χ(C1) · · ·χ(Ck)
χ(eG)k−2 ,

où la somme est sur tous les caractères irréductibles de G.

Démonstration. Pour chaque classe de conjugaison C, considérons l’élément eC := ∑
g∈C eg ∈

C[G]. Si ρ est une représentation irréductible de G (vue dans C[G]), eC peut être vu comme
une application ρ-équivariante de C[G] dans lui-même. 18 Par le lemme de Schur, on conclut
qu’il existe un nombre complexe νρ(C) tel que ρ(eC) = νρ(C) id. Alors, puisque χ(C) = χ(g)
pour tout g ∈ C,

|C|χ(C) =
∑
g∈C

χ(g) = tr(ρ(eC)) = νρ(C)χ(eG).

18. On définit eC(eg) =
∑

h∈C ehg et on étend par linéarité.
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On en déduit que
νρ(C) = χ(C)

χ(eG) |C|.

Alors on calcule la trace de l’action de

E = eC1 ◦ eC2 ◦ . . . ◦ eCk =
∑
c1∈C1

. . .
∑
ck∈Ck

ec1...ck

dans C[G]. Puisque le caractère de la représentation régulière est

χC[G](g) =

|G| si g = eG

0 sinon
,

on conclut que cette trace vaut |G|N (G;C1, · · · , Ck). Aussi, comme C[G] est somme directe
des représentations irréductibles (corollaire 4.17)

C[G] ∼=
⊕
i

E⊕ dimEi
i ,

où les Ei forment un ensemble complet de représentations irréductibles, et eC agit par multi-
plication par scalaire, on en déduit que la trace vaut

∑
i

νρi(C1) · · · νρi(Ck)(dimEi)2 = |C1| · · · |Ck|
∑
χ

χ(C1) · · ·χ(Ck)
χ(eG)k−2 .

Le résultat suit.

On va nous intéresser principalement au cas G = Sn qui, suivant Schur, est généralement
écrit en utilisant la notation suivante.
Définition 4.22 Soit C une classe de conjugaison de Sn et λ une partition de n. On définit
fC comme la fonction suivante :

fC(λ) = |C|χ
λ(C)
fλ

,

où χλ(C) est le caractère de la représentation de Specht associé à λ évalué sur n’importe
quel élément de C. Si C est la classe d’un m-cycle, on écrira fm au lieu de fC .

Corollaire 4.35 — Formule de Frobenius pour Sn. Soient C1, . . . , Ck des classes de conjugaison
dans Sn. Alors,

N (Sn;C1, · · · , Ck) = 1
n!
∑
λ`n

(fλ)2fC1(λ) . . . fCk(λ).

Une application intéressante est une formule pour les caractères des représentations de
Specht (ce résultat s’appelle également formule de Frobenius).
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Théorème 4.36 — Formule de Frobenius. Soit χλ le caractère de la représentation du groupe
symétrique Sn correspondant à une partition n = λ1 + . . . + λk et on pose `j = λj + k − j.
Notons Cµ la classe de conjugaison de Sn correspondant aux permutations de type µ et soit
ij le nombre de fois où j apparaît dans µ. Alors χλ(Cµ) est le coefficient de x`11 . . . x

`k
k dans∏

i<j

(xi − xj)
∏
j

(xj1 + . . .+ xjk)ij .

� Exemple 4.28 Pour illustrer ce résultat, on recalcule la valeur du caractère χ5 de S4 calculé
dans le exemple 4.9. En fait, on va montrer que le caractère χ5 provient de la représentation
correspondant à λ = (2, 2). C’est-à-dire au diagramme de Young

.

Dans ce cas on a `1 = 2 + 2− 1 = 3 et `2 = 2 + 2− 2 = 2. Les types des classes de conjugaison
de S4 sont

µid = (1, 1, 1, 1), µ(1 2)) = (2, 1, 1), µ(1 2 3) = (3, 1),
µ(1 2 3 4) = (4), µ(1 2)(3 4) = (2, 2).

Enfin, les valeurs de χλ sont les coefficients de x3
1x

2
2 dans les polynômes suivants :

• (x1 − x2)(x1 + x2)4 = x5
1 + 3x4

1x2 + 2x3
1x

2
2 − 2x2

1x
5
2 − 3x1x

4
2 − x5

2

• (x1 − x2)(x1 + x2)2(x2
1 + x2

2) = x5
1 + x4

1x2 + 0x3
1x

2
2 − x1x

4
2 − x5

2 ;
• (x1 − x2)(x1 + x2)(x3

1 + x3
2) = x5

1 − 1x3
1x

2
2 + x2

1x
3
2 − x5

2 ;
• (x1 − x2)(x4

1 + x4
2) = x5

1 − x4
1x2 + 0x3

1x
2
2 + x1x

4
2 − x5

2 ;
• (x1 − x2)(x2

1 + x2
2)2 = x5

1 − x4
1x2 + 2x3

1x
2
2 − 2x2

1x
3
2 + x1x

4
2 − x5

2.
On voit ainsi que

χλ(id) = 2, χλ((1 2)) = 0, χλ((1 2 3)) = −1, χλ((1 2 3 4)) = 0 et χλ((1 2)(3 4)) = 2.

Cela implique que χ5 est le caractère provenant de la représentation de Specht ψλ. �

L’un des corollaires du théorème 4.36 est la réponse à notre observation précédente selon
laquelle les tables de caractères des représentations Sn n’avaient que des entiers.

Corollaire 4.37 Les caractères des représentations de Specht ont des valeurs entières.

On peut également démontrer la proposition 4.32 à l’aide de ce théorème.

Corollaire 4.38 — Formule des équerres. Soit λ une partition de n. Alors,

fλ = n!∏
u∈λ hλ(u) .
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Démonstration. Tout d’abord, notons que la dimension de l’espace vectoriel Sλ peut être
trouvée en évaluant son caractère dans la classe de conjugaison de l’identité (µ = (1, 1, . . . , 1)).
C’est-à-dire que fλ est le coefficient de x`11 . . . x

`k
k dans∏

i<j

(xi − xj)(x1 + . . .+ xk)n.

On rappelle que le déterminant de Vandermonde est∣∣∣∣∣∣∣∣∣∣∣

1 xk · · · xk−1
k

1 xk−1 · · · xk−1
k−1

... ... . . . ...
1 x1 · · · xk−1

1

∣∣∣∣∣∣∣∣∣∣∣
=
∑
σ∈Sk

sgn(σ)xσ(1)−1
k · · ·xσ(k)−1

1 =
∏
i<j

(xi − xj)

et que, par la formule du multinôme de Newton,

(x1 + . . .+ xk)n =
∑

r1+...+rk=n

n!
r1! · · · rk!

xr1
1 · · ·x

rk
k .

Après multiplier les deux sommes, on voit que le coefficient de x`11 · · ·x`kk est égal à

∑
σ∈Sk

sgn(σ) n!
(`1 − σ(k) + 1)! · · · (`k − σ(1) + 1)! .

En effectuant quelques manipulations algébriques, on s’aperçoit que l’expression ci-dessus est
équivalente à

n!
`1! · · · `k!

∑
σ∈Sk

sgn(σ)
k∏
j=1

`j(`j − 1) · · · (`j − k + σ(j) + 1)

= n!
`1! · · · `k!

∣∣∣∣∣∣∣∣
1 `k `k(`k − 1) · · · `k . . . (`k − k + 2)
... ... ... . . . ...
1 `1 `1(`1 − 1) · · · `1 . . . (`1 − k + 2)

∣∣∣∣∣∣∣∣ = n!
`1! · · · `k!

∏
i<j

(`i − `j),

car on peut réduire ce déterminant-là au déterminant de Vandermonde en faisant des opérations
de réduction sur les colonnes.

On note également que chaque `j correspond à la longueur du j-ième équerre de la première
colonne (que l’on dénote uj). Il suffit, maintenant, de montrer que

n!
`1! · · · `k!

∏
i<j

(`i − `j) = n!∏
u∈λ hλ(u) .

On suit par récurrence du nombre de colonnes de λ. Si λ n’a qu’une colonne, `j = n− j + 1 =
hλ(uj) et donc

dimSλ = n!
n!(n− 1)! · · · 1!

n−1∏
i=1

(n− i)! = 1 = n!
n! .
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Soient λ la partition de n− k obtenue en supprimant la première colonne de λ, k le nombre
des lignes de λ et `j = λj +k− j. On a `j− `j = −(k−k)−1 et `j− `i = `j− `i. Par hypothèse
de récurrence ∏

i<j(`i − `j)∏k
i=1 `i!

= 1∏
u∈λ hλ(u)

et du fait que `j = hλ(uj), on obtient

dimSλ = n!∏k
j=1 `i

·
∏
i<j(`i − `j)∏k
j=1(`j − 1)!

= n!∏
u∈λ hλ(u) ·

∏k
i=1 `i!∏k

j=1(`j − 1)!
∏
i<j

k<j

(`i − `j).

Notons que

∏
i<j

k<j

(`i − `j) =
k∏
i=1

∏
j>max(i,k)

(`i − `j) =
k∏
i=1

(`i − 1)!
(`i − 1− k + max(i, k))!

.

Si i > k, alors `i = k− i+ 1 (car il n’aura aucune boîte à droite pour de ui), ce qui nous donne

k∏
i=1

(`i − 1)!
`i!

k∏
i=k+1

(`i − 1)!.

En substituant dans l’expression trouvée précédemment, on obtient le résultat désiré.

� Exemple 4.29 On va calculer la valeur de fm, liée à un m-cycle. En effet, tout d’abord on a
que la taille de la classe de conjugaison Cm correspondant à un m-cycle est

|Cm| =
n!

m(n−m)! .

Cela découle du fait que pour avoir une permutation σ que a un m-cycle, il suffit de fixer n−m
éléments (ce qu l’on peut faire de

(
n

n−m

)
façons) et après compter les nombres des permutations

cycliques qu’on peut avoir avec les m éléments qui restent (évidemment (m− 1)!).
De plus, la démonstration du corollaire ci-dessus nous montre que

fλ = n!
`1! · · · `k!

∏
i<j

(`i − `j).

Il suffit donc de calculer χλ(Cm).
On pose ∆(`1, · · · , `k) := ∏

i<j(`i − `j). Par le théorème 4.36, χλ(Cm) est le coefficient de
x`11 · · · x`kk dans l’expression :

∏
i<j

(xi − xj)(x1 + . . .+ xk)m(xm1 + . . .+ xmk ) =
k∑
s=1

xms
∏
i<j

(xi − xj)(x1 + . . .+ xk)m
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Encore par ce que l’on a vu dans la démonstration du corollaire précédent, le coefficient désiré
est

k∑
s=1

(n−m)!∆(`1, . . . , `s −m, . . . , `k)
`1! · · · (`s −m)! · · · `k!

.

On conclut que

fm(λ) = |Cm|
χλ(Cm)
fλ

= n!
m(n−m)! ·

(n−m)!
n!

k∑
s=1

`s!
(`s −m)!

∏
j 6=s

`s − `j −m
`s − `j

,

où `s!
(`s−m)! = `s(`s − 1) · · · (`s −m+ 1) même si `s < m. On peut également écrire :

fm(λ) = 1
m

k∑
s=1

`s!
(`s −m)!

∏
j 6=s

(
1− m

`s − `j

)
.

Ce résultat nous sera utile dans le chapitre 5. �

Enfin, un dernier corollaire sera important pour notre étude ; il traduit le fait que λ 7→ χλ(C)
ne dépend que de la différence λj − j.

Corollaire 4.39 Pour toute classe de conjugaison C de Sn, on a fC ∈ Λ∗, l’algèbre des fonctions
symétriques décalées (cf. exemple A.17).

On ne montrera que fC est symétrique décalé ; le raisonnement plus complet, qui prouve
que en plus que fC est en fait un polynôme, peut être trouvé dans [17].

Démonstration. D’abord, on observe que les coefficients des monômes x`11 . . . x
`i
i . . . x

`j
j . . . x

`k
k

et x`11 . . . x
`j
i . . . x

`i
j . . . x

`k
k dans ∏

i<j

(xi − xj)
∏
j

(xj1 + . . .+ xjk)ij

sont les mêmes à signe près. (Ils ont les signes inversés.) On en déduit que χλ(C)/χλ(id) est
invariant par transposition des `i et donc fC est symétrique dans les variables λi − i.
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5
L’APPROCHE ALGÉBRIQUE AUX VOLUMES

DE TEICHMÜLLER

5.1 Aperçu de la méthode

On revient sur le troisième chapitre, où on a obtenu une méthode de calcul des volumes de
Teichmüller ; à savoir le théorème 3.1. De manière explicite, si κ = (κ1, . . . , κn) est une partition
de 2g − 2, alors

µ1(H1(κ1, . . . , κn)) = 2(2g + n− 1) lim
r→∞

1
r2g+n−1 ·m(r),

où m(r) est le nombre de surfaces à petits carreaux avec des singularités coniques d’angles
2π(κ1 + 1), . . . , 2π(κn + 1) qui peuvent être construites avec au plus r carrés.

Après A. Eskin et A. Okounkov [7], on considère le nombre Cd(κ) des surfaces à petits
carreaux X qui ont des singularités coniques d’angles 2πκ1, . . . , 2πκn et peuvent être construites
en utilisant d carrés avec des poids |Aut(X)|−1, où Aut(X) est le groupe des automorphismes
de X.

� On observe que l’article [7] utilise une normalisation différente de celle utilisée jusqu’à
présent pour la mesure de Masur-Veech. Par conséquent, certaines de nos formules
ont un aspect différent.

Normalement, le groupe des automorphismes Aut(X) est trivial. Par conséquent, m(r) et∑r
d=1 Cd(κ + ~1), où ~1 = (1, . . . , 1), ont le même comportement asymptotique lorsque r → ∞.

Néanmoins, ces poids simplifient beaucoup de nos formules. 19

L’approche décrite dans ce chapitre est basée sur une certaine forme multilinéaire

〈·| . . . |·〉h : Λ∗ × · · · × Λ∗ → C[h−1],

où Λ∗ est l’algèbre des fonctions symétriques décalées (voir l’exemple A.17). Cette forme est
telle que

〈fκ1+1| . . . |fκn+1〉h = µ1(H1(κ))(2g + n− 2)!
2h2g+n−1 + · · · ,

où les fk sont des fonctions de la définition 4.22 et les points représentent les termes de degré
inférieur en h−1. Le calcul de cette forme sera basé sur les étapes suivantes :

1. On écrit les fonctions fk en termes des fonctions pk définies par

pk(x) :=
∞∑
i=0

[
(xi − i+ 1/2)k − (−i+ 1/2)k

]
+ (1− 2−k)ζ(−k), k = 1, 2, 3, . . . ,

19. Une autre raison de considérer ces valeurs est le fait que q 7→
∑∞

d=0 q
dCd(κ) est une forme quasi-modulaire.

En d’autres termes, il s’agit d’un polynôme en les séries d’Eisenstein Gk(q), pour k = 2, 4, 6. (Voir [7].)
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où ζ est la fonction zêta de Riemann. (Théorème 5.2.)
2. En utilisant la multilinéarité de 〈·| . . . |·〉h, il suffit de calculer 〈pκ1| . . . |pκn〉h, qui est de la

forme
〈pκ1| . . . |pκn〉h = ⟪κ⟫

h2g−1 + · · · ,

où les ⟪κ⟫ sont des constantes que l’on appelle des cumulants élémentaires. (Théorème
5.4.)

3. Enfin, on calcule les cumulants ⟪κ⟫ en termes des valeurs de la fonction zêta aux entiers
positives paires. (Théorème 5.5.)

Le fait que ζ(2k) soit toujours un multiple rationnel de π2k impliquera alors le résultat
conjecturé à la fin du troisième chapitre.

5.2 Calcul du volume de H1(3, 1)

A titre d’exemple de cette méthode, on va calculer le volume de Teichmüller de la strate
H(3, 1). Comme on l’a décrit, la première étape consiste à écrire f2 et f4 en fonction des pk, ce
qui est possible grâce au théorème 5.1 :

f2 = 1
2p2, f4 = 1

4p4 − p2p1 + · · · ,

où, comme toujours, les points représentent des termes de « poids » inférieur qui ne contribuent
en rien au résultat. Ces « poids » constituent une filtration sur Λ∗ avec la propriété que 〈·| . . . |·〉h
les envoient vers la filtration naturelle de C[h−1] par degré, ce qui nous permet d’identifier
beaucoup de termes négligeables. Par multilinéarité il suffit donc de calculer

〈p4|p2〉h et 〈p2p1|p2〉h.

Le théorème 5.4 implique alors que

〈f4|f2〉h = 1
8〈p4|p2〉 −

1
2〈p2p1|p2〉h + · · · = 1

8h7⟪4, 2⟫−
1

2h7⟪2⟫⟪2, 1⟫−
1

2h7⟪1⟫⟪2, 2⟫+ · · · .

Enfin, le théorème 5.5 nous permet de calculer les cumulants élémentaires en termes de la
fonction zêta :

⟪1⟫ = π2

6 , ⟪2⟫ = 0

⟪4, 2⟫ = 416
315π

6, ⟪2, 2⟫ = 16
45π

6,

ce qui nous donne
〈f4|f2〉h =

(128
945π

6
) 1
h7 + · · · .

On obtient ainsi le volume voulu :

µ1(H1(3, 1))6!
2 = 128

945π
6 =⇒ µ1(H1(3, 1)) = 16

42525π
6.

C’est exactement la valeur décrite à la fin du troisième chapitre.
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5.3 Le terme de poids maximum de fm

Cette section est consacrée à un résultat très utile qui nous permet d’expliciter les termes de
fm dont on aura besoin pour calculer le terme le plus important de l’expression 〈fm1 | · · · |fmn〉h
en utilisant sa multilinéarité. Tout d’abord, on définit une nouvelle filtration de Λ∗ en attribuant
un poids k + 1 au élément

pk(λ) :=
∞∑
i=1

[
(λi − i+ 1/2)k − (−i+ 1/2)k

]
+ (1− 2−k)ζ(−k), k = 1, 2, 3, . . . .

Ces fonctions constituent une base de Λ∗ sur laquelle on veux écrire les fm. On note que cette
filtration n’est pas la même que la filtration obtenue à la limite projective.

On rappelle que l’algèbre Λ∗ est une limite projective des algèbres Λ∗` de fonctions symé-
triques décalées à ` variables. En d’autres termes, l’algèbre Λ∗` est constituée des polynômes
symétriques en

ξi = λi − i, i = 1, . . . , `.

La filtration hérité par Λ∗n est la même que l’on peut obtenir en attribuant des poids k + 1
aux polynômes

pk :=
n∑
i=1

ξki , k = 1, 2, 3, . . . ,

qui forment une base naturelle de Λ∗n (comme vu dans l’exemple A.17)
On considère des partitions λ = (λ1, · · · , λn) (définition 4.13). Comme définie dans l’énoncé

du théorème 4.36, ij sera le nombre de fois que j apparaît dans λ. On note alors i! = ∏
j∈N ij!.

Enfin, on définit l’élément mλ ∈ Λ∗n par

mλ =
∑
σ∈Sn

n∏
i=1

ξλiσ(i).

Avant d’énoncer et démontrer le principal théorème de cette section, la notion de poids
d’une partition sera définie, ainsi qu’un lemme que l’on peut obtenir sans trop d’efforts.
Définition 5.1 Soit λ une partition de longueur n. Alors le poids associé à λ est

wt(λ) = |λ|+ n = λ1 + . . .+ λn + n.

Également, wt(λ) est le poids de pλ := ∏n
i=1 pλi .

Lemme 5.1 Soit λ = (λ1, . . . , λn) une partition de longueur n et ij le nombre des fois que j
apparaît dans λ. Alors

pλ :=
n∏
j=1

pλj = i!mλ + · · · ,

où les points signifient des termes de poids plus petit.
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Démonstration. Par définition,

pλ =
n∏
i=1

(
n∑

m=1
ξλim

)
.

Comme chaque monôme a le même degré, il faut juste extraire ceux qui ont la quantité la
plus grande des variables différentes, c’est-à-dire les termes de la forme ∏n

i=1 ξ
λi
σ(i). Pour chaque

j ∈ N, on peut avoir ij! permutations des variables sans changer la valeur du monôme, de façon
que chaque terme de la forme désirée apparaît ∏j∈N ij! = i! fois. Le résultat suit.

Finalement, on a le théorème suivant :

Théorème 5.2 La fonction fm peut être écrite comme :

fm = 1
m

∑
wt(λ)=m+1

(−m)n−1

i! pλ + · · · ,

où la somme est sur tous les partitions λ = (λ1, . . . , λn) de poids m+ 1 et les points signifient
des termes de poids plus petit.

Démonstration. On rappelle d’abord la formule que l’on a obtenu dans l’exemple 4.29 :

fm(λ) = 1
m

n∑
s=1

ξs!
(ξs −m)!

∏
j 6=s

(
1− m

ξs − ξj

)
.

Comme fm est symétrique par rapport aux variables ξj, on peut supposer 20 que i < j
implique |ξi| > |ξj| et faire l’expansion en série géométrique, en trouvant :

fm = 1
m

n∑
s=1

ξs!
(ξs −m)!

s−1∏
j=1

(
1 +m

∞∑
d=0

ξds
ξd+1
j

)
n∏

j=s+1

(
1−m

∞∑
d=0

ξdj
ξd+1
s

)
.

Étant donné une partition λ telle que wt(λ) = m+ 1, on s’intéresse à calculer le coefficient
de ξλ1

1 · · · ξλ`` dans l’expression ci-dessus.
On s’aperçoit que l’unique terme de la somme qui nous donne des puissances positives de ξ1

est celui correspondant à s = 1, et que les monômes de poids maximal viennent de l’expansion
de

ξm1
∏̀
j=2

(
1−m

∞∑
d=0

ξdj
ξd+1

1

)
.

Le coefficient de ξλ1
1 · · · ξλnn dans cette expression est (−m)n−1 (car on a besoin du terme

ξ
λj
j

ξ
λj+1
1

pour chaque j = 2, . . . , n). En considérant que pλ et pλ ont le même terme de poids
maximal, lorsqu’on permute les λi on retrouve i!mλ. Par le lemme 5.1, le résultat suit.
20. Après on permutera les variables, de façon que cette supposition est sans perte de généralité.
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� Exemple 5.1 On va calculer les termes de poids maximum de f2 et f4. Il n’y a qu’une seule
partition telle que wt(λ) = 3, à savoir λ = (2). D’où,

f2 = 1
2p2 + · · · .

Pareillement, il y a deux partitions λ = (2, 1) et (4) de poids égal à 5. Ainsi,

f4 = 1
4(p4 + (−4)p2p1) + · · · = 1

4p4 − p2p1 + · · · .
�

5.4 La forme multilinéaire

Dans cette section, on étudiera la forme multilinéaire 〈·| . . . |·〉h décrite au début de ce
chapitre et on développera une méthode systématique pour la calculer sur la base des pk. Pour
cela, il faut d’abord comprendre la notation habituelle utilisée pour décrire les partitions d’un
ensemble. (Ne pas confondre avec les partitions d’un entier !)

Rappelons qu’une partition α d’un ensemble S est une présentation de S sous la forme d’une
union disjointe non ordonnée de sous-ensembles non vides

S = α1 q α2 q · · · q α`,

appelés blocs de α. Le nombre ` = `(α) est la longueur de la partition α. On note Πn l’ensemble
de toutes les partitions de {1, . . . , n}.

Étant donné deux partitions α et β, on note α∨ β la jointure de α et β, qui est la partition
la plus fine qui est plus grossière que α et β. Par exemple, si

α = {1, 2} q {3} q {4} et β = {1} q {2, 3} q {4},

alors α ∨ β = {1, 2, 3} q {4}. On dit que α, β ∈ Πn sont transversaux et on note α ⊥ β si

`(α) + `(β)− `(α ∨ β) = n.

Par exemple, dans le cas ci-dessus, α et β sont transversaux. Pareillement, on dit que α, β ∈ Πn

sont complémentaires et on note α>β si α, β sont transversaux et α ∨ β = {1, . . . , n}.
Enfin et surtout, on définit la forme 〈·| . . . |·〉h.

Définition 5.2 Pour tout F ∈ Λ∗, on définit la forme linéaire

〈F 〉q =
[ ∞∏
n=1

(1− qn)
]∑

λ

q|λ|F (λ).

Plus généralement, pour s ∈ N, on définit la forme multilinéaire suivante sur (Λ∗)s :

〈F1|F2| . . . |Fs〉q =
∑
α∈Πn

(−1)`(α)−1(`(α)− 1)!
`(α)∏
k=1

〈∏
i∈αk

Fi

〉
q

.

Finalement, on fait q = e−h et on dénote par 〈·| . . . |·〉h le polynôme en h−1 qui fait partie du
développement asymptotique de 〈·| . . . |·〉q lorsque q → 1.
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L’importance de cette définition découle de la proposition ci-dessous.

Proposition 5.3 Soit κ une partition de 2g − 2. Alors,

〈fκ1+1| . . . |fκn+1〉h = µ1(H1(κ))(2g + n− 2)!
2h2g+n−1 + · · · ,

où les fk sont des fonctions de la définition 4.22.

Par la section précédente et cette proposition, tout ce qu’il faut pour calculer les volumes
de Teichmüller est de pouvoir calculer la forme multilinéaire sur des produits des pk. En fait,
comme on le verra maintenant, tout ce que l’on a besoin de savoir, c’est comment calculer
〈pm1 | . . . |pmn〉h pour un multi-indice m = (m1, . . . ,mn).
Définition 5.3 — Les cumulants élémentaires. On appelle les coefficients ⟪m⟫ = ⟪m1, . . . ,mn⟫
dans l’expansion

〈pm1 | . . . |pmn〉h = ⟪m⟫
h|m|+1 + · · ·

les cumulants élémentaires.

Étant donné un multi-indicem = (m1, . . . ,mn) et une partition ρ ∈ Πn de longueur ` = `(ρ),
on écrit

〈|ρ pm〉h =
〈 ∏
i∈ρ1

pmi

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣
∏
i∈ρ`

pmi

〉
h

.

Le prochain théorème nous permet de calculer les 〈|ρ pm〉h en fonction des cumulants élé-
mentaires.

Théorème 5.4 Soit m = (m1, . . . ,mn) un multi-indice et ρ ∈ Πn une partition de longueur `.
Alors,

〈|ρ pm〉h = 1
h|m|−`+n+1

∑
α>ρ

`(α)∏
k=1
⟪mαk⟫+ · · · ,

où mαk = {mi | i ∈ αk}.

� Exemple 5.2 On utilise ce théorème pour calculer 〈pµ|pν〉h, où µ = (µ1, . . . , µn) et ν =
(ν1, . . . , νm). Dans ce cas,

ρ = {1, . . . , n} q {n+ 1, . . . , n+m}

et donc ` = 2. D’où,

〈pµ|pν〉h = 1
h|µ|+|ν|+n+m−1

∑
i,j

⟪µi, νj⟫
∏
k 6=i
⟪µk⟫

∏
l 6=j
⟪νl⟫+ · · · .

Particulièrement, 〈p2p1|p2〉 = h−7(⟪2⟫⟪2, 1⟫+ ⟪1⟫⟪2, 2⟫). �
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5.5 Les cumulants élémentaires

Dans les deux dernières sections, on a réduit le problème du calcul des volumes de Teichmül-
ler au calcul des cumulants élémentaires. On aborde maintenant ce dernier problème. Pour cela,
on utilise la variante suivante de la fonction zêta :

z(k) =

(2− 22−k)ζ(k) si k est paire
0 sinon

.

Cette variante correspond exactement aux coefficients de la série entière de πx/ sin(πx) :

πx

sin(πx) =
∞∑
k=0

z(k)xk.

Le prochain théorème fournit une méthode pour calculer les cumulants élémentaires.

Théorème 5.5 Pour tout multi-indice m = (m1, . . . ,mn),

⟪m⟫ =
∑
α∈Πn

(−1)`(α)−1(`(α)− 2)!
∑
d

1
d!

`(α)∏
k=1
|mαk |! z (|mαk | − |αk| − dk + 1) ,

où |mαk | :=
∑
i∈αk mi et la somme est sur tous les `(α)-uplets

d = (d1, . . . , d`(α))

d’entiers non négatifs tels que ∑ dk = `(α)− 2 et

dk ≡ 1 + |mαk | − |αk| mod 2

pour tout k = 1, . . . , `(α). Le terme α = {1, . . . , n} doit être compris comme |m|!z(|m|−n+2).

� Exemple 5.3 D’abord, il est clair que ⟪k⟫ = k! z(k+ 1) pour tout entier k. Ensuite on calcule
⟪k, l⟫ pour des entiers k et l. Dans ce cas,

Π2 = {{1, 2}, {1} q {2}}

et donc

⟪k, l⟫ = (k + l)! z(k + l)−
∑
d

k! l!
d! z(k − d1)z(l − d2)

= (k + l)! z(k + l)− k! l! z(k)z(l),

où la somme n’a que le terme d = (0, 0). �

Comme on l’a vu, les volumes de Teichmüller sont écrits sous forme de sommes et de produits
des nombres rationnels et des cumulants élémentaires qui, selon le théorème 5.5, sont écrits en
fonction de la fonction zêta modifiée z. Puisque z(k)/πk est toujours un nombre rationnel, on
obtient la conjecture du fin du troisième chapitre !

97



L’Approche Algébrique aux Volumes de
Teichmüller

Théorème 5.6 Les volumes de Teichmüller sont toujours des multiples rationnels de π2g. En
d’autres termes,

µ1(H1(κ1, . . . , κn))π−2g ∈ Q,

où κ1 + · · ·+ κn = 2g − 2.
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A
PRÉLIMINAIRES ALGÉBRIQUES

A.1 Catégories

La théorie des catégories fournit un langage qui imprègne une grande partie des mathéma-
tiques modernes. Cela nous permet, d’un côté, d’unifier résultats apparaissant dans différents
contextes et, d’autre part, de changer la focalisation des objets sur les applications entre eux,
ce qui s’est avéré une approche très fructueuse.

Une catégorie consiste essentiellement en une collection d’objets et de morphismes entre ces
objets, qui satisfont certaines conditions naturelles.
Définition A.1 — Catégorie. Une catégorie C consiste en une classe d’objets Ob(C) et, pour
chaque pair d’objets A,B ∈ Ob(C), une classe de morphismes HomC(A,B) tels que :

1. pour chaque objet A ∈ Ob(C) il existe un morphisme idA ∈ HomC(A,A), appelé
identité de A ;

2. pour chaque pair f ∈ HomC(A,B) et g ∈ HomC(B,C), il existe un morphisme g ◦ f ∈
HomC(A,C) appelé composée de f et g ;

3. la composition est associative : pour tous f ∈ HomC(A,B), g ∈ HomC(B,C) et h ∈
HomC(C,D),

(h ◦ g) ◦ f = h ◦ (g ◦ f);

4. les identités sont des éléments neutres de la composition : pour tout morphisme f ∈
HomC(A,B),

idB ◦f = f ◦ idA .

� Notez que l’on s’est abstenu de dire que Ob(C) et HomC(A,B) sont des ensembles. En
pratique, ces classes sont souvent trop grandes pour être des ensembles. Cependant,
cela ne posera aucun problème dans notre étude.

Si la catégorie est implicite dans le contexte, nous omettrons l’index C et écrirons simplement
Hom(A,B). Dans ce cas, il sera également habituel d’écrire f : A → B de manière analogue
aux applications entre ensembles.

Un morphisme d’un objet A ∈ Ob(C) dans lui-même s’appelle un endomorphisme. On écrit
EndC(A) pour HomC(A,A). Observons que si f, g ∈ EndC(A), alors f ◦ g l’est aussi.
� Exemple A.1 — Catégories concrètes. Bien entendu, l’exemple type d’une catégorie est consti-
tué d’ensembles et de fonctions entre ensembles. La catégorie Set, où Ob(Set) est la classe de
tous les ensembles et HomSet(A,B) = BA.

Plusieurs catégories importantes sont formées à partir de structures algébriques. C’est le
cas de Grp, la catégorie des groupes, Ring, la catégorie des anneaux et k-Vect, la catégorie des
espaces vectoriels sur un corps k. �
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� Exemple A.2 — « Slice category ». Étudions maintenant une catégorie très utile dont les
objets ne sont pas des ensembles « avec une structure algébrique ». Soit C une catégorie et A
un objet de C. On va définir une catégorie C ↓ A dont les objets sont des morphismes dans C
d’un objet quelconque à A. C’est-à-dire que

Ob(C ↓ A) :=
⋃

Z∈Ob(C)
HomC(Z,A).

Étant donné cette classe d’objets, il n’y a qu’une seule manière raisonnable de définir les
morphismes entre deux objets : si f1, f2 sont des objets de C ↓ A

Z1 Z2

A A

f1 f2

alors des morphismes f1 → f2 sont précisément des diagrammes commutatifs 21

Z1 Z2

A

f1

ϕ

f2

dans C. En d’autres termes,
HomC↓A(f1, f2) := {ϕ ∈ HomC(Z1, Z2) | f1 = f2 ◦ ϕ}.

Vérifions que C ↓ A est en fait une catégorie : si f : Z → A est un objet de C ↓ A, l’identité
idf n’est rien d’autre que l’identité de Z. La commutativité du diagramme

Z Z

A

f

idZ

f

découle du fait que C est une catégorie. La composition en C ↓ A provient également de la
composition en C :

Z1 Z2 Z3

A

f1

ϕ

f2

ψ

f3

21. Un diagramme commutatif est un diagramme tel que tous les chemins dirigés dans le diagramme avec les
mêmes points de départ et d’arrivée aboutissent au même résultat.
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il suffit de mettre les diagrammes côte à côte ! La composition est bien définie parce que le
diagramme obtenu en supprimant la flèche centrale

Z1 Z3

A

f1

ψ ◦ ϕ

f3

commute également. Le fait que la composition soit associative et possède des identités en tant
qu’éléments neutres découle de manière analogue. �

� Exemple A.3 — « Coslice category ». En inversant toutes les flèches en C ↓ A, on obtient une
nouvelle catégorie A ↓ C, définie par

Ob(A ↓ C) := Ob(C ↓ A)

et pour tous f1, f2 ∈ Ob(A ↓ C),

HomA↓C(f1, f2) := HomC↓A(f2, f1).

C’est-à-dire que les morphismes entre deux objets f1 et f2 de A ↓ C sont des diagrammes
commutatives

A

Z1 Z2

f1

ϕ

f2

dans C. Ceci est un exemple d’une construction plus générale : étant donné une catégorie C,
on définit la catégorie opposée Cop où

Ob(Cop) := Ob(C)

et pour tous A,B ∈ Ob(Cop),

HomCop(A,B) := HomC(B,A).

Dans notre cas, A ↓ C a été définie comme la catégorie opposée à C ↓ A. Le préfixe « co- »
indique généralement que l’on inverse toutes les flèches. �

Étant donné que la théorie des catégories met davantage l’accent sur les morphismes que
sur les objets, on peut se demander s’il existe des notions analogues à l’injection, à la surjection
et à la bijection qui fonctionnent avec les morphismes généraux. La proposition suivante, bien
connue, répond à cette question.
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Proposition A.1 Soient A,B des ensembles avec A 6= ∅ et soit f : A → B une application.
Alors,

1. f a un inverse à gauche si et seulement si elle est injective ;
2. f a un inverse à droite si et seulement si elle est surjective.

Cette réinterprétation des classifications usuelles d’injectivité et de surjectivité se traduit
comme suit pour les morphismes généraux.
Définition A.2 — Monomorphismes et épimorphismes. Soit C une catégorie. Un morphisme
f ∈ HomC(A,B) est un monomorphisme si pour tout objet Z ∈ Ob(C) et tous morphismes
α1, α2 ∈ HomC(Z,A) :

f ◦ α1 = f ◦ α2 =⇒ α1 = α2.

Pareillement, f ∈ HomC(A,B) est un épimorphisme si pour tout objet Z ∈ Ob(C) et tous
morphismes β1, β2 ∈ HomC(B,Z) :

β1 ◦ f = β2 ◦ f =⇒ β1 = β2.

Comme d’habitude, il est habituel de décrire ces propriétés à l’aide de diagrammes commu-
tatifs. Un monomorphisme est tel que la commutativité du diagramme

Z A B
α1

α2

f

implique α1 = α2. De même, un épimorphisme est tel que la commutativité du diagramme

A B Z
f β1

β2

implique β1 = β2.
Certes, dans Set les monomorphismes correspondent précisément aux injections et les épi-

morphismes aux surjections. Cependant, ce n’est pas toujours le cas, comme l’illustre l’exemple
suivant.
� Exemple A.4 Dans Ring, un (homo)morphisme surjectif est certainement un épimorphisme
(puisqu’il s’agit d’un épimorphisme dans Set). Cependant, considérons l’inclusion d’anneaux
suivante :

ι : Z ↪→ Q.
J’affirme que même sans être une surjection, ι est un épimorphisme d’anneaux. En fait, si β1
et β2 sont tels que le diagramme

Z Q Rι
β1

β2

commute, β1|Z = β2|Z. Alors, pour p, q ∈ Z avec q 6= 0,

β1

(
p

q

)
= β1(p)β1(q)−1 = β2(p)β2(q)−1 = β2

(
p

q

)
.

On conclut que ι est un épimorphisme. �
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Comme on a vu dans la proposition A.1, une application est bijective si et seulement si elle
a un inverse à gauche et un inverse à droite. Dans ce cas, les deux inverses sont égaux. Cette
notion se situe bien dans le contexte catégorique.
Définition A.3 — Isomorphisme. Soit C une catégorie. Un morphisme f ∈ HomC(A,B) est
un isomorphisme s’il existe g ∈ HomC(B,A) tel que

g ◦ f = idA et f ◦ g = idB .

Dans ce cas, on dit que g est le morphisme inverse de f et on note g = f−1. S’il existe
un isomorphisme entre deux objets A et B, on dit que A et B sont isomorphes et on note
A ∼= B.

Ainsi que l’on pouvait s’y attendre, l’inverse d’un isomorphisme est unique.

Proposition A.2 Soit C une catégorie et f ∈ HomC(A,B) un isomorphisme. Alors, f admet
un unique morphisme inverse.

Démonstration. Soient g1, g2 ∈ HomC(B,A) deux inverses de f . Alors,

g1 = g1 ◦ idB = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = idA ◦ g2 = g2.

Ceci conclut la démonstration.

Notez que c’est exactement le même argument que celui utilisé pour prouver que si une
application entre ensembles a un inverse à gauche et un inverse à droite, alors elle a un inverse
unique et est une bijection. De plus, bien sûr, les isomorphismes dans Set sont précisément les
bijections.
Définition A.4 — Automorphisme. Soit C une catégorie et A un objet de C. Alors, un auto-
morphisme de A est un isomorphisme de A sur lui-même. L’ensemble des automorphismes
est noté AutC(A).

Comme on peut le constater, l’ensemble des automorphismes avec l’opération de composition
forme un groupe.

A.2 Objets terminaux et problèmes universels

Plusieurs concepts dans ce rapport auront deux descriptions : une construction explicite et
une description de l’objet en tant que solution d’un « problème universel ». Habituellement,
cette dernière description clarifie de nombreux aspects et met en évidence la motivation derrière
la définition.

Pour comprendre ce qu’est un problème universel, on commence par définir quelques objets
« distingués » qui existent dans certaines catégories.
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Définition A.5 — Objets terminaux. Soit C une catégorie. Un objet I ∈ Ob(C) est initial si
pour tout objet A ∈ Ob(C),

HomC(I, A) est un singleton.

Pareillement, un objet F ∈ Ob(C) est final si pour tout objet A ∈ Ob(C),

HomC(A,F ) est un singleton.

On utilise terminal pour indiquer l’une de ces possibilités.

� Exemple A.5 — Objets terminaux dans Set. Un ensemble I est initial dans Set si pour tout
ensemble A, il existe une unique application f : I → A. Ce n’est le cas que si I = ∅.

La catégorie Set a aussi des objets finaux : si F = {s} est un singleton, pour chaque
ensemble A, il existe une unique application f : A → F . L’application constante définie par
f(a) = s pour tout a ∈ A. On conclut que tout singleton est final dans Set. �

� Exemple A.6 — Objets terminaux dans Ring. L’anneau des entiers Z est initial dans Ring. En
fait, pour tout anneau R il existe un unique homomorphisme d’anneaux ϕ : Z→ R déterminé
par les conditions

ϕ(1) = 1R et ϕ(a+ b) = ϕ(a) + ϕ(b).

Ce morphisme est donné par ϕ(n) = n · 1R. �

Énonçons une propriété fondamentale qui sera utilisée sans arrêt au long de ce rapport.
C’est précisément cette propriété qui garantira que les solutions aux problèmes universels, si
elles existent, sont uniques à isomorphisme près.

Proposition A.3 Soit C une catégorie. Alors si I1 et I2 sont initiaux dans C, il existe un
unique isomorphisme dans HomC(I1, I2). De même, si F1 et F2 sont finaux dans C, il existe
un unique isomorphisme dans HomC(F1, F2).

Démonstration. On va prouver l’énoncé sur les objets initiaux. L’énoncé sur les objets finaux
est analogue.

Comme I1 et I2 sont initiaux, il existe un unique morphisme f : I1 → I2 et un unique
morphisme g : I2 → I1. Considérons g ◦ f : I1 → I1. Comme I1 est initial, il existe un unique
morphisme dans HomC(I1, I1) : le morphisme identité idI1 . On conclut que

g ◦ f = idI1 .

Pareillement, on peut conclure que f ◦ g = idI2 . Le résultat s’en suit.

La proposition A.3 illustre bien le fait que même si les objets finaux de Set ne sont pas
uniques, ils sont tous isomorphes.
� Exemple A.7 Considérons une variante (très utile) de la catégorie de l’exemple A.3. Étant
donné un ensemble A et une catégorie C donc les objets sont des ensembles (avec peut-être plus
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de structure), on définit une catégorie CA où les objets sont des paires (j, R) avec R ∈ Ob(C)
et j ∈ HomSet(A,R). Un morphisme (j1, R1)→ (j2, R2) dans CA est un diagramme commutatif

A

R1 R2

j1

ϕ

j2

où ϕ : R1 → R2 est un morphisme dans C (pas dans Set !).
Cette construction apparaît couramment dans l’algèbre moderne. On donne un exemple

classique.
Soit C = Grp. Le composant de groupe d’un objet initial dans GrpA s’appelle le groupe

libre F (A). La proposition A.3 dit que si un objet initial existe, il est unique à isomorphisme
près. Cela justifie le fait que l’on ait appelé F (A) le groupe libre.

On peut réécrire le fait que F (A) est un objet initial de la manière suivante : F (A) est
le groupe libre sur l’ensemble A s’il existe une application j : A → F (A) telle que pour tout
groupe G et pour toute application f : A→ G il existe un unique homomorphisme de groupes
ϕ : F (A)→ G tel que le diagramme

A

F (A) G

j

ϕ

f

commute. Cette description de F (A) est un exemple de problème universel.
La prochaine étape consiste à montrer qu’il existe un groupe satisfaisant la propriété de

F (A). Cette construction (et son analogue dans la catégorie Ab des groupes abéliens) est assez
belle mais échappe à la portée de cet exemple. Le lecteur peut le voir dans [1]. �

La notion de « problème universel » peut être comprise de plusieurs manières équivalentes.
Puisque le contexte le plus naturel est trop lourd pour nos besoins, on se contente donc d’une
définition pratique et de nombreux exemples.
Définition A.6 — Problème universel. On dit qu’un objet est la solution d’un problème uni-
versel lorsqu’il s’agit d’un objet terminal d’une catégorie. Habituellement, cette catégorie
sera l’une des catégories C ↓ A ou A ↓ C, définies dans les exemples A.2 et A.3, ou une
variante simple, comme dans le cas de l’exemple A.7.

En raison de la proposition A.3, la procédure à suivre sera toujours la même : on définit
un objet en termes de problème universel et on montre qu’un tel problème admet une solution
explicite. Dès lors, la propriété universelle nous donnera toutes les informations dont on a besoin
sur cet objet.

Prenons quelques exemples !
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� Exemple A.8 — Quotients. Soit ∼ une relation d’équivalence et A un ensemble.
Que peut-on atteindre du quotient A/ ∼ ? D’abord, il faut que l’on ait une manière de voir

A dans A/ ∼. C’est-à-dire que l’on veut une application

π : A→ A/ ∼ .

Aussi, pour traduire l’idée que des éléments équivalents deviennent égaux dans le quotient, si
a ∼ b sont des éléments équivalents dans A, on doit avoir π(a) = π(b). En fait, on a même plus
que ça : si ϕ : A → Z est une application telle que a ∼ b implique ϕ(a) = ϕ(b), il doit exister
une unique application ϕ : A/ ∼→ Z telle que le diagramme

A Z

A/ ∼

ϕ

π
ϕ

commute. Ce problème universel détermine A/ ∼ à isomorphisme près. Dans ce cas, la condition
est que π soit un objet initial d’une catégorie similaire à A ↓ Set, où on ne considère que des
morphismes satisfaisants une condition spéciale. Voyons comment la construction habituelle du
quotient résout ce problème universel : si ϕ : A→ Z est telle que a ∼ b implique ϕ(a) = ϕ(b),
la commutativité du diagramme implique que

ϕ([a]) = ϕ(a).

C’est-à-dire que, si ϕ est, en fait, une application, elle est unique et définie par l’équation
ci-dessus. Néanmoins, par définition de ϕ,

[a] = [b] =⇒ a ∼ b =⇒ ϕ(a) = ϕ(b).

Ce qui implique que ϕ est bien définie. Bien entendu, la construction catégorique de quotients
de structures algébriques (ou même d’espaces topologiques) est analogue. �

Les catégories C ↓ A et A ↓ C nous ont aidés à décrire catégoriquement les objets définis
à partir d’un objet A ∈ Ob(C). Pour étudier des produits (et coproduits), il faut définir une
catégorie similaire prenant en compte deux objets A et B.

Soit C une catégorie et A,B des objets de C. On définit la catégorie CA,B, où les objets sont
des diagrammes

A

Z

B

f

g
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dans C et un morphisme

A

Z1

B

f1

g1

A

Z2

B

f2

g2

est un diagramme commutatif comme le suivant.

A

Z1 Z2

B

f2

g2

f1

g1

σ

Plus formellement, on a

Ob(CA,B) := {(f, g, Z) ∈ HomC(Z,A)× HomC(Z,A)×Ob(C)}

et

HomCA.B((f1, g1, Z1), (f2, g2, Z2)) := {σ ∈ HomC(Z1, Z2) | f1 = f2 ◦ σ et g1 = g2 ◦ σ}.

� Exemple A.9 — Produits. Le produit entre deux objets A et B d’une catégorie C est la
troisième composante d’un objet final de la catégorie CA,B. Voyons comment cela fonctionne
dans le cas C = Set. Considérons le produit cartésien A×B avec ses deux projections naturelles.

A

A×B

B

πA

πB

Pour montrer que A×B est le produit catégorique, on doit prouver que pour chaque diagramme

A

Z

B

fA

fB
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il existe une unique application σ : Z → A×B telle que le diagramme

A

Z A×B

B

πA

πB

fA

fB

σ

commute. Définissons donc

σ : Z → A×B
z 7→ (fA(z), fB(z)).

Pour définition, fA = πA ◦ σ et fB = πB ◦ σ. Le résultat suit.
Le produit direct des groupes et les produits habituels des anneaux et des espaces vecto-

riels sont tous des produits catégoriques. De plus, le produit catégorique entre deux espaces
topologiques porte la topologie produit. �

Comme le préfixe l’indique déjà, pour étudier les coproduits, on va inverser toutes les flèches
dans CA,B et examiner la catégorie CA,B dont les objets sont des diagrammes

A

Z

B

f

g

et les morphismes
A

Z1

B

f1

g1

A

Z2

B

f2

g2

sont des diagrammes commutatifs comme le suivant.

A

Z1 Z2

B

f1

g1

σ

f2

g2

Voyons comment on peut utiliser cela pour construire le coproduit.
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� Exemple A.10 — Coproduits. Le coproduit entre deux objets A et B d’une catégorie C est (la
troisième composante d’un objet initial de la catégorie CA,B. La catégorie Set a un coproduit :
l’union disjointe. Considérons l’union disjointe entre A et B définie par

A
∐
B := ({0} × A) ∪ ({1} ×B).

Cet ensemble est doté d’inclusions canoniques

ιA : A→ A
∐
B et ιB : B → A

∐
B

a 7→ (0, a) b 7→ (1, b).

On doit montrer donc que pour tout diagramme

A

Z

B

fA

fB

il existe une unique application σ : A∐B → Z telle que le diagramme

A

A
∐
B Z

B

ιA

ιB

σ

fA

fB

commute. Comme d’habitude, la commutativité du diagramme force la définition du morphisme
σ, donnée par

σ(c) =

fA(a) si c = (0, a) ∈ {0} × A
fB(b) si c = (1, b) ∈ {1} ×B

.

Contrairement aux produits, les coproduits catégoriques peuvent être très différents d’une
union disjointe. Par exemple, le coproduit des groupes abéliens et des espaces vectoriels est
donné par la somme directe. Le coproduit dans la catégorie Grp est donné par une construction
analogue à l’exemple A.7 et est appelé produit libre. �

Dans les espaces vectoriels (et les groupes abéliens), le produit cartésien et la somme directe
satisfont aux conditions du produit et du coproduit catégorique en même temps. C’est une
explication du fait que, pour les familles finies d’espaces vectoriels, le produit cartésien et la
somme directe sont isomorphes. Ceci est un phénomène général qui se passe avec des catégories
étonnamment bien comportés : les catégories « abéliennes ».
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A.3 Limite projective

Les limites projectives, en théorie des catégories, sont des constructions similaires aux sé-
quences de Cauchy, en analyse, où on utilise des approximations toujours meilleures de notre
« objet idéal ». Tout comme on peut utiliser une suite de Cauchy de nombres rationnels pour
représenter un nombre réel, on utilisera des séquences pour décrire les objets-limites que l’on
obtiendra.
Définition A.7 — Système projectif. Soit (I,≤) un ensemble ordonné et C une catégorie. Un
système projectif d’objets de C indexé par I est la donnée d’une famille (Ai)i∈I d’objets de
C et de morphismes f ji ∈ HomC(Aj, Ai) pour tout i ≤ j ∈ I tels que
— Pour tout i ∈ I, f ii = idAi ;
— Pour tous i, j, k ∈ I tels que i ≤ j ≤ k, f ji ◦ fkj = fki .

Presque toujours notre ensemble ordonné sera l’ensemble des entiers positifs. Dans ce cas,
le choix d’un système projectif est le choix d’un diagramme

· · · A4 A3 A2 A1
f5

4 f4
3 f3

2 f2
1

dans C. Notez que tous les morphismes non représentés sont implicites par la définition du
système projectif.
Définition A.8 — Limite projective. Étant donné un système projectif (Ai, f ji ) dans une ca-
tégorie C, une limite projective des Ai suivant les morphismes f ji est un pair (A, πi) où A
est un objet de C et πi ∈ HomC(A,Ai) sont des morphismes tels que πi = f ji ◦ πj pour
tous i ≤ j. De plus, il faut que pour tout autre pair (B,ψi), où B est un objet de C et
ψi ∈ HomC(B,Ai), il existe un unique morphisme u ∈ HomC(B,A) tel que le diagramme

B

A

Aj Ai

u

πiπj

ψj ψi

fji

soit commutatif pour tous i ≤ j. Comme toujours, lorsqu’elle existe, la limite projective est
unique à isomorphisme près. On la note A = lim←−Ai.

En pratique, où on utilisera I = N, la limite inverse est un objet A, doté des morphismes
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πi tels que le diagramme

A

· · · A4 A3 A2 A1
f5

4 f4
3 f3

2 f2
1

π4 π3 π2
π1

π3

commute et cette condition doit être universelle, au sens donné par la définition ci-dessus.
� Exemple A.11 — Limite projective d’ensembles. Dans la catégorie Set, on peut toujours
explicitement écrire la limite projective

lim←−Ai =
{

(ai)i∈I ∈
∏
i∈I
Ai

∣∣∣∣∣ ai = f ji (aj) pour tous i ≤ j

}
.

Dans ce cas, les projections πi sont les projections canoniques données par le produit. La limite
projective fonctionne exactement de la même manière dans toutes les catégories qui ont des
produits, telles que Grp, Ab, Ring, k-Vect, etc. Une exception notable est le cas de la catégorie
des corps, où le produit de deux corps n’est pas nécessairement un corps. �

L’exemple ci-dessous, donné par [2], n’est pas nécessaire pour la suite de notre étude mais
illustre merveilleusement bien ce qu’est une limite projective.
� Exemple A.12 — L’anneau des entiers p-adiques. Supposons que l’on veuille résoudre l’équation
x2+1 = 0 dans Z. Certes, cette équation n’a pas de solution, mais ignorons ce fait pour l’instant.

On peut observer que cette équation a deux solutions dans Z/5Z qui, à signe près, sont
égales. Cherchons donc une solution que satisfait x ≡ 2 (mod 5).

Puisque x satisfait x = 5y + 2, on remplace ceci dans notre équation pour obtenir

(5y + 2)2 = −1 =⇒ 25y2 + 20y = −5 =⇒ 20y ≡ −5 (mod 25) =⇒ 4y ≡ −1 (mod 5).

Cette dernière équation a l’unique solution y ≡ 1 (mod 5). D’où on voit que

x = 5y + 2 ≡ 5 · 1 + 2 ≡ 7 (mod 25).

On peut montrer que ce processus peut être étendu indéfiniment (lemme de Hensel), en trouvant
ainsi une séquence de résidus (xk)k≥1 ∈ Z/5kZ qui résolvent notre équation dans l’anneau dans
lequel ils vivent. Ces résidus sont cohérents en ce sens que si fk : Z/5k+1Z → Z/5kZ est
l’application associant au résidu de n (mod 5k+1) le résidu de n (mod 5k)

· · · Z/54Z Z/53Z Z/52Z Z/5Z
f4 f3 f2 f1

,

alors fk(xk+1) = xk. On a ainsi construit un anneau Z5 := lim←−Z/5
kZ, qui contient une copie

isomorphe de Z, où l’équation x2 + 1 = 0 a une solution. �

111



Préliminaires Algébriques

A.4 Produit tensoriel

Soit E,F des espaces vectoriels sur un corps commutatif k. Notre motivation derrière la
définition du produit tensoriel est la volonté de traiter des fonctions bilinéaires « comme si »
elles étaient linéaires. Autrement dit, nous voulons un nouvel k-espace vectoriel E ⊗k F et une
fonction bilinéaire τ telle que pour tout espace vectoriel G, et pour toute application bilinéaire
ϕ de E × F dans G, il existe une unique application linéaire ϕ de E ⊗k F dans G telle que le
diagramme ci-dessous commute.

E × F G

E ⊗k F

ϕ

τ
∃!
ϕ

En d’autres termes, telle que ϕ = ϕ ◦ τ . On écrit alors l’élément τ(x, y) de E ⊗k F comme
x ⊗ y. Comme on a vu, l’espace E ⊗k F (ou, plus formellement, le morphisme τ) est solution
d’un problème universel et donc, s’il existe, est unique à moins d’un isomorphisme. Alors, il
faut construire le produit tensoriel.

Théorème A.4 Le produit tensoriel existe.

Démonstration. Soit {ei : i ∈ I} une base de E et {fj : j ∈ J} une base de F . Pour chaque
pair (ei, fj) on définit un symbole purement formel ei⊗fj et on définit l’espace vectoriel E⊗kF
comme l’espace engendré par les vecteurs linéairement indépendants ei ⊗ fj.

Puisque τ doit être bilinéaire, τ est déterminée par ses valeurs en (ei, fj). Ensuite, on définit
τ comme étant l’unique fonction bilinéaire telle que τ(ei, fj) = ei ⊗ fj pour tout i ∈ I, j ∈ J .

Enfin, si ϕ : E×F → G est une fonction bilineaire quelconque, on définit ϕ comme l’unique
application linéaire telle que ϕ(ei ⊗ fj) = ϕ(ei, fj) pour tout i ∈ I, j ∈ J .

� Notez que, bien que E ⊗k F soit engendré par {e ⊗ f ∈ E ⊗k F : e ∈ E, f ∈ F}, cet
ensemble n’est pas linéairement indépendant.

Corollaire A.5 Si E et F sont à dimension finie,

dim(E ⊗k F ) = dim(E) dim(F ).

Théorème A.6 Soient E,F,G espaces vectoriels sur un corps k. Alors,

Hom(E,F ;G) ∼= L(E ⊗k F,G),

où Hom(E,F ;G) est l’espace vectoriel des applications bilinéaires E×F → G et L(E⊗kF,G)
est l’espace vectoriel des applications linéaires E ⊗k F → G.
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Démonstration. La propriété définissant le produit tensoriel implique que pour chaque ϕ ∈
Hom(E,F ;G) il existe une unique application ϕ ∈ L(E⊗kF,G) telle que ϕ = ϕ◦τ . C’est-à-dire,
il existe une fonction

Λ : Hom(E,F ;G)→ L(E ⊗k F,G)
ϕ 7→ ϕ.

En fait, Λ est elle-même lineaire parce que si ϕ1, ϕ2 ∈ Hom(E,F ;G) on a

[rΛ(ϕ1) + sΛ(ϕ2)](x⊗ y) = rϕ1(x, y) + sϕ2(x, y) = [rϕ1 + sϕ2](x, y).

Si f ∈ L(E ⊗k F,G), on voit que Λ(f ◦ τ) = f , ce qui implique que Λ est une surjection.
Enfin, si Λ(ϕ) = 0 on a ϕ = Λ(ϕ) ◦ τ = 0, ce qui implique que Λ est une injection.

On énonce sans preuve quelques propriétés simples du produit tensoriel et de ses éléments.

Proposition A.7 Soient E,F,G des k-espaces vectoriels. Alors,
1. E ⊗k F ∼= F ⊗k E ;
2. (E ⊗k F )⊗k G ∼= E ⊗k (F ⊗k G).

Aussi, E ⊗k F est un groupe abélien tel que
3. (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y ;
4. x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2 ;
5. c(x⊗ y) = (cx)⊗ y = x⊗ (cy).

pour tout x, x1, x2 ∈ E, y, y1, y2 ∈ F et c ∈ k.

De manière analogue, on peut définir le produit d’un nombre fini de k-espaces vectoriels.
Définition A.9 Étant donné E1, . . . , Em k-espaces vectoriels, on définit leur produit tensoriel
comme le pair (E1⊗k . . .⊗k Em, τ), où τ est multilinéaire, tel que pour tout espace vectoriel
G, et pour toute application multilinéaire ϕ de E1 × . . . × Em dans G, il existe une unique
application linéaire ϕ de E1⊗k . . .⊗kEm dans G telle que le diagramme ci-dessous commute.

E1 × . . .× Em G

E1 ⊗k . . .⊗k Em

ϕ

τ
∃! ϕ

On écrit l’élément τ(x1, . . . , xm) comme x1 ⊗ . . .⊗ xm.

Comme avant, le produit tensoriel existe et est unique à moins d’un isomorphisme. Le
corollaire A.5, le théorème A.6 et la proposition A.7 se généralisent comme attendu.
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A.5 Puissance extérieure et symétrique

Dans cette section, on étudie deux constructions analogues à celle de la section précédente
en utilisant des classes spéciales d’applications multilinéaires. Pour simplifier la notation, on
définit

E⊗m := E ⊗k . . .⊗k E︸ ︷︷ ︸
m fois

,

où E⊗0 := k.
Définition A.10 Soit ϕ : Em → G une application multilinéaire. On dit que ϕ est symétrique
si pour tout permutation σ ∈ Sm et tout x1, . . . , xm ∈ E,

ϕ(xσ(1), xσ(2), . . . , xσ(m)) = ϕ(x1, x2, . . . , xm).

D’autre part, on dit que ϕ est alternée si

ϕ(x1, x2, . . . , xm) = 0 lorsque xi = xj pour i 6= j.

Le lecteur pourrait imaginer que l’on définirait les applications multilinéaires alternées
comme celles satisfaisant

ϕ(xσ(1), xσ(2), . . . , xσ(m)) = (−1)σϕ(x1, x2, . . . , xm),

pour tout permutation σ ∈ Sm et tout x1, . . . , xm ∈ E. Toutefois, si la caractéristique de k est
2, cette définition coïncide avec la définition des applications multilinéaires symétriques. Pour
char(k) 6= 2, la définition ci-dessus est équivalente à la définition des applications multilinéaires
alternées. C’est-à-dire,

Proposition A.8 Soit ϕ : Em → G une application multilinéaire. Si ϕ est alternée, alors pour
tout permutation σ ∈ Sm et tout x1, . . . , xm ∈ E,

ϕ(xσ(1), xσ(2), . . . , xσ(m)) = (−1)σϕ(x1, x2, . . . , xm).

Si la caractéristique de k n’est pas 2, la réciproque est vrai aussi.

Démonstration. Il suffit de considérer le cas m = 2. Comme ϕ est multilinéaire et alternée,

0 = ϕ(x1 + x2, x1 + x2) = ϕ(x1, x2) + ϕ(x2, x1).

La première partie suit. Enfin, si la condition de l’énoncé est satisfait, ϕ(x, x) = −ϕ(x, x).
C’est-à-dire, 2ϕ(x, x) = 0. Donc, pour char(k) 6= 2, le résultat suit.

Les définitions qui suivent découlent de la volonté de traiter les classes d’applications multi-
linéaires que l’on vient de définir comme linéaires. Le lecteur doit comprendre que ces construc-
tions sont totalement analogues à la construction du produit tensoriel. Comme auparavant, la
puissance extérieur et la puissance symétrique sont des solutions aux problèmes universels et
sont donc uniques à moins d’un isomorphisme.
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Définition A.11 Étant donné un k-espace vectoriel E, on définit ses puissances extérieures
comme le pair (∧mE, η), où η est multilinéaire alternée, tel que pour tout espace vectoriel
G, et pour toute application multilinéaire alternée ϕ de Em dans G, il existe une unique
application linéaire ϕ de ∧mE dans G telle que le diagramme ci-dessous commute.

Em G

∧mE

ϕ

η

∃!
ϕ

On écrit l’élément η(x1, . . . , xm) comme x1 ∧ . . . ∧ xm.

Soit W ⊂ E⊗m le sous-espace engendré par les vecteurs de la forme x1 ⊗ . . .⊗ xm tels que
xi = xj pour i 6= j. Soit aussi q : E⊗m → E⊗m/W l’application canonique. Alors, le pair
(E⊗m/W, τ ◦ q) satisfait la propriété de la puissance extérieure.

Comme avant, les propriétés de ∧mE découlent du fait que η est multilinéaire alternée.

Proposition A.9 Soient E un k-espace vectoriel. Alors, ∧2E est un groupe abélien tel que
1. (x1 + x2) ∧ y = x1 ∧ y + x2 ∧ y ;
2. x ∧ (y1 + y2) = x ∧ y1 + x ∧ y2 ;
3. c(x ∧ y) = (cx) ∧ y = x ∧ (cy) ;
4. x ∧ x = 0.

pour tout x, x1, x2, y, y1, y2 ∈ E et c ∈ k.

Les propriétés de ∧mE, pour m > 2, sont analogues.

Théorème A.10 Soit E un espace vectoriel à dimension finie. Alors, si dimE = n,

dim
(∧m

E
)

=
(
n

m

)
.

Démonstration. Soit {e1, . . . , en} une base de E. On affirme que l’ensemble

B = {ei1 ∧ ei2 ∧ . . . ∧ eim : 1 ≤ i1 < i2 < . . . < im ≤ n}

est une base de ∧mE. Étant donné un vecteur x1 ∧ . . .∧ xm ∈
∧mE, on peut écrire chacun des

xi comme une combinaison linéaire des vecteurs de la base. Si un vecteur ei apparaît deux fois
dans le produit, le résultat est le vecteur nul et si les ei apparaissent dans le mauvais ordre, on
peut les réorganiser. Il en résulte que B engendre ∧mE.

Pour montrer que B est linéairement indépendant, on suppose qu’il existe une combinaison
linéaire non triviale d’éléments de B résultant le vecteur nul. Comme aucun élément de B n’est
le vecteur nul, il existe un i tel que certains éléments de cette combinaison linéaire contiennent
le vecteur ei mais pas tous. On prend alors le produit extérieur avec ei. Le résultat est une
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combinaison linéaire non triviale des vecteurs de la base de ∧m+1E qui résulte le vecteur nul.
La preuve se réduit alors au cas n = m, ce qui est trivial.

Enfin, on définit la puissance symétrique comme prévu.
Définition A.12 Étant donné un k-espace vectoriel E, on définit ses puissances symétriques
comme le pair (SymmE, ν), où ν est multilinéaire symétrique, tel que pour tout espace
vectoriel G, et pour toute application multilinéaire symétrique ϕ de Em dans G, il existe une
unique application linéaire ϕ de SymmE dans G telle que le diagramme ci-dessous commute.

Em G

SymmE

ϕ

ν
∃! ϕ

On écrit l’élément ν(x1, . . . , xm) comme x1 ∨ . . . ∨ xm.

Soit V ⊂ E⊗m le sous-espace engendré par les vecteurs de la forme

xσ(1) ⊗ . . .⊗ xσ(m) − x1 ⊗ . . .⊗ xm

pour une permutation σ ∈ Sm. Soit aussi q : E⊗m → E⊗m/V l’application canonique. Alors, le
pair (E⊗m/V, τ ◦ q) satisfait la propriété de la puissance symétrique.

Comme avant, les propriétés de SymmE découlent du fait que ν est multilinéaire symétrique.

Proposition A.11 Soient E un k-espace vectoriel. Alors, Sym2E est un groupe abélien tel
que

1. (x1 + x2) ∨ y = x1 ∨ y + x2 ∨ y ;
2. x ∨ (y1 + y2) = x ∨ y1 + x ∨ y2 ;
3. c(x ∨ y) = (cx) ∨ y = x ∨ (cy) ;
4. x ∨ y = y ∨ x.

pour tout x, x1, x2, y, y1, y2 ∈ E et c ∈ k.

Les propriétés de SymmE, pour m > 2, sont analogues.

Théorème A.12 Soit E un espace vectoriel à dimension finie. Alors, si dimE = n,

dim (SymmE) =
(
n+m− 1

m

)
.

Démonstration. Soit {e1, . . . , en} une base de E. Cette fois-ci, c’est assez clair que

B = {ei1 ∨ ei2 ∨ . . . ∨ eim : 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n}

est une base de SymmE. La partie difficile est compter le nombre d’éléments dans cet ensemble.
Heureusement, il existe une astuce merveilleuse qui le rend cela facile. Soit xk = ik+1 − ik, où
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on écrit i0 = 1 et im+1 = n. On observe que

x0 + x1 + . . .+ xm = im − i1 = n− 1.

Chaque solution de l’équation x0 + . . .+ xm = n− 1 en entiers positifs donné lieu à un élément
de la base B. Donc, il suffit de compter le numéro de solutions de cette équation. La stratégie
consiste à considérer m tirets et n− 1 boules. Chaque solution de cette équation est équivalent
à mettre x0 boules avant le premier tiret, x1 boules avant le deuxième tiret et ainsi de suite.

x0 | x1 | x2 | · · · | xm

Donc, le nombre de solutions dans cette équation est égal au nombre de façons d’échanger des
m tirets et n− 1 boules. C’est-à-dire,

(m+ n− 1)!
m!(n− 1)! =

(
n+m− 1

m

)
.

A.6 Algèbres sur un corps commutatif

Soit k un corps commutatif et considérons k[x1, . . . , xn], l’anneau des polynômes à coeffi-
cients dans k en n indéterminées. Bien que k[x1, . . . , xn] soit normalement vu comme un anneau,
il est plus naturellement décrit comme un espace vectoriel sur k, avec une multiplication bili-
néaire. Cette structure algébrique est appelée algèbre.
Définition A.13 — Algèbre. Une algèbre sur un corps commutatif k est un espace vectoriel
(A,+, ·) sur k avec une multiplication bilineaire × : A× A→ A. Un morphisme entre deux
k-algèbres A et B est une application linéaire f : A→ B telle que

f(x× y) = f(x)× f(y)

pour tous x, y ∈ A. Ainsi, on a défini la catégorie k-Alg, des algèbres sur k.

On va généralement ignorer la distinction entre ×, le produit entre deux vecteurs, et ·, le
produit entre un scalaire et un vecteur, désignant les deux par juxtaposition.
� Exemple A.13 Les algèbres sur un corps commutatif imprègnent les mathématiques. L’en-
semble des nombres complexes, l’ensemble de toutes les matrices avec des coefficients dans un
corps, les quaternions et même R3 avec le produit vectoriel sont des exemples d’algèbres. �

� Exemple A.14 Considérons une définition équivalente d’algèbre commutative (c’est-à-dire
quand × forme une opération commutative) sur k. On peut dire qu’une algèbre commuta-
tive est la donnée d’un anneau commutatif A avec un homomorphisme ϕ : k → A. Dans ce cas
on a une multiplication par scalaire donnée par

k × A→ A

(k, a) 7→ ϕ(k)a.
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Pour préserver cette multiplication par scalaire, on dit qu’un morphisme entre deux algèbres
commutatives A et B est un morphisme d’anneaux f : A→ B tel que

f(cx) = cf(x)

pour tout c ∈ k et x ∈ A. C’est-à-dire que le diagramme

k

A B

ϕA

f

ϕB

commute. On réalise que la catégorie des algèbres commutatives est la catégorie k ↓ CRing, où
CRing est la catégorie des anneaux commutatives. �

La description de k[x1, . . . , xn] en tant que k-algèbre est déjà plus précise que sa description
en tant qu’anneau. Cependant, on ignore toujours le fait que tout polynôme p ∈ k[x1, . . . , xn]
a un entier deg p associé, son degré. Cela motive la définition de l’algèbre graduée.
Définition A.14 — Algèbre graduée. Soit A une algèbre sur un corps commutatif k. Une
graduation sur A est la donnée d’une famille (An)n≥0 de sous-espaces vectoriels de A vérifiant

A =
∞⊕
n=0

An

et, pour tout n,m ∈ N,
AnAm ⊂ An+m,

où AnAm est défini comme l’algèbre engendré par des produits de vecteurs de An et Am. En
d’autres termes, pour tout n,m ∈ N,

x ∈ An, y ∈ Am =⇒ x× y ∈ An+m.

L’algèbre A est alors dite graduée et les éléments de An sont dits homogènes de degré n.
Un morphisme f : A → B d’algèbres graduées sur le même corps est un morphisme

d’algèbres tel que f(An) ⊂ Bn pour tout n. Ainsi, on a défini la catégorie k-GAlg, des
algèbres graduées sur k.

On peut certainement écrire k[x1, . . . , xn] comme

k[x1, . . . , xn] =
∞⊕
d=0

kd[x1, . . . , xn],

où les kd[x1, . . . , xn] sont constitués des polynômes homogènes de degré d. En d’autres termes,
ces polynômes dont les termes non nuls ont tous le même degré d.

Les constructions que l’on a vu dans les sections précédentes forment également, de manière
naturelle, des algèbres graduées.
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� Exemple A.15 — L’algèbre tensorielle. Soit E un espace vectoriel. On aimerait utiliser le
produit tensoriel pour former une algèbre avec E. Le problème est que v et v⊗ v ne vivent pas
dans le même espace. Le moyen le plus simple de résoudre ce problème consiste à considérer
tous les espaces E⊗m en même temps et à former l’algèbre tensorielle :

T (E) :=
∞⊕
m=0

E⊗m,

où l’opération d’algèbre est donnée par

(v1 ⊗ · · · ⊗ vi)× (w1 ⊗ · · · ⊗ wj) := v1 ⊗ · · · ⊗ vi ⊗ w1 ⊗ · · · ⊗ wj

et étendue par linéarité. Bien sûr, T (E) est une algèbre graduée.
De même, on définit l’algèbre extérieure et l’algèbre symétrique de E :

∧
(E) :=

∞⊕
m=0

∧m
E, Sym(E) :=

∞⊕
m=0

SymmE.

On observe que l’algèbre extérieure satisfait

α ∧ β = (−1)pqβ ∧ α,

si α ∈ ∧pE et β ∈ ∧q E. De plus, l’algèbre symétrique est commutative alors que l’algèbre
tensorielle ne l’est pas. �

L’exemple suivant et sa variante, illustré à l’exemple A.17, revêtent une importance fonda-
mentale pour la théorie des représentations du groupe symétrique et en particulier pour notre
étude.
� Exemple A.16 — L’algèbre des fonctions symétriques. En continuant à étudier l’algèbre des
polynômes, considérons le sous-espace Λn de k[x1, . . . , xn] constitué des polynômes p tels que

p(xσ(1), . . . , xσ(n)) = p(x1, . . . , xn), pour tout σ ∈ Sn.

Ces polynômes sont appelés symétriques. Certainement Λn hérite la structure d’algèbre graduée
de k[x1, . . . , xn] :

Λn =
∞⊕
d=0

Λd
n,

où Λd
n se compose des polynômes homogènes symétriques de degré d. Pour m ≥ n on a des

morphismes naturels
k[x1, . . . , xm]→ k[x1, . . . , xn]

qui envoient chacun de xn+1, . . . , xm à zéro et les autres xi à eux-mêmes. En restreignant à Λm,
on obtient les morphismes

ρmn : Λm → Λn

d’algèbres graduées. On a ainsi un système projectif dans k-GAlg. On appelle alors

Λ = lim←−Λn

119



Préliminaires Algébriques

l’algèbre des fonctions symétriques. Notons qu’un élément de Λ n’est pas un polynôme, mais
une séquence (pn)n≥1 de polynômes telle que pn ∈ Λn,

pm(x1, . . . , xn, 0, . . . , 0) = pn(x1, . . . , xn), pour m ≥ n

et supn deg(pn) <∞. On utilisera la notation naturelle et dénotera un élément de Λ comme un
polynôme symétrique dans une quantité dénombrable de variables. Par exemple, x1x2 +x1x3 +
x2x3 est dans Λ mais ∏∞i=1(1 + xi) n’est pas. �

� Soulignons que la différence entre la limite projective dans la catégorie k-GAlg et celle
dans k-Alg correspond exactement à la condition supn deg(pn) <∞. Si la limite était
dans la catégorie k-Alg, le produit infini ∏∞i=1(1 + xi) serait un élément de Λ.

Examinons dorénavant une variante de l’exemple précédent, dont l’expérience s’est révélée
très utile pour notre propos.
� Exemple A.17 — L’algèbre des fonctions symétriques décalées. Considérons maintenant le
sous-espace Λ∗n de k[x1, . . . , xn] constitué des polynômes p tels que

p(ξσ(1) + 1, . . . , ξσ(n) + n) = p(ξ1 + 1, . . . , ξn + n), pour tout σ ∈ Sn.

Autrement dit, constitué des polynômes qui sont symétriques dans les variables ξi = xi− i. Ces
polynômes sont appelés symétriques décalés. Tout comme avant, Λ∗n est une algèbre graduée
par degré. Pareillement, on aimerait prendre la limite projective. Cependant, la restriction ρ̃mn
du morphisme

k[x1, . . . , xm]→ k[x1, . . . , xn]

considérée avant à Λ∗m est un morphisme d’algèbres mais pas un morphisme d’algèbres graduées.
Par exemple,

(x1 − 1)(x2 − 2) + (x1 − 1)(x3 − 3) + (x2 − 2)(x3 − 3)

est un élément de Λ∗3. Cependant, sa image par ρ̃3
2 est

(x1 − 1)(x2 − 2)− 3(x1 − 1)− 3(x2 − 2),

qui est dans Λ∗2 mais n’est pas homogène. Cela nous empêche de prendre la limite projective
dans la catégorie k-GAlg. Pour résoudre ce problème, on va définir la catégorie des algèbres
filtrées, une généralisation du concept d’algèbre graduée. �

Définition A.15 — Algèbre filtrée. Soit A une algèbre sur un corps commutatif k. Une filtra-
tion sur A est la donnée d’une famille croissante {0} ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ A de
sous-espaces vectoriels de A vérifiant

A =
∞⋃
n=0

Fn, et, pour tout n,m ∈ N, FnFm ⊂ Fn+m.

L’algèbre A est alors dite filtrée. Un morphisme f : A → B d’algèbres filtrées sur le même
corps est un morphisme d’algèbres tel que f(Fn) ⊂ Qn, où (Qn)n≥0 est une filtration sur B,
pour tout n. Ainsi, on a défini la catégorie k-FAlg, des algèbres filtrées sur k.
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Bien sûr, toute algèbre graduée a une filtration naturelle, donnée par

Fn :=
n⊕
i=0

Ai, pour tout n ≥ 0.

� Exemple A.18 — L’algèbre des fonctions symétriques décalées (suite). Bien que les morphismes
ρ̃mn , considérés dans l’exemple précédent, ne soient pas des morphismes d’algèbres graduées, ce
sont certainement des morphismes d’algèbres filtrées. Cela nous permet de construire la limite
projective

Λ∗ := lim←−Λ∗n

dans la catégorie k-FAlg. Cette limite s’appelle l’algèbre des fonctions symétriques décalées.
Comme auparavant, un élément de Λ∗ est une séquence (pn)n≥1 de polynômes telle que pn ∈ Λ∗n,

pm(x1, . . . , xn, 0, . . . , 0) = pn(x1, . . . , xn), pour m ≥ n

et supn deg(pn) < ∞. Dans la suite de notre étude, on ne considérera que l’algèbre complexe
des fonctions symétriques décalées. C’est-à-dire le cas k = C. Tout comme l’algèbre Λ a la base
naturelle

∞∑
i=1

xki , k = 1, 2, 3, . . . ,

cette algèbre a la base naturelle

∞∑
i=1

[
(xi − i)k − (−i)k

]
, k = 1, 2, 3, . . . .

Cependant, on utilisera généralement une variante commode, donnée par

pk(x) :=
∞∑
i=1

[
(xi − i+ 1/2)k − (−i+ 1/2)k

]
+ (1− 2−k)ζ(−k), k = 1, 2, 3, . . . ,

où ζ est la fonction zêta de Riemann. Cette base simplifiera beaucoup de nos formules. Par
exemple, en définissant la fonction génératrice

ex(t) :=
∞∑
i=1

e(xi−i+1/2)t,

on obtient
pk(x) = k! [tk] ex(t),

où [xk] est l’opérateur qui envoie une fonction au coefficient de xk dans sa série de Laurent.
Cette formule sera au cœur de notre étude au cinquième chapitre. �
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A.7 Actions de groupes

En tout généralité, une action d’un groupe G sur un objet A d’une catégorie C est un
homomorphisme

ρ : G→ AutC(A).

Toutefois, le cas C = Set a déjà une théorie très riche et est plus approprié pour cette in-
troduction. On écrit alors juste Aut(A) pour dénoter AutSet(A). La notion d’action de groupe
illustre clairement l’idée qu’un groupe peut « encoder » les symétries (les automorphismes)
d’un ensemble quelconque.
Définition A.16 Une action d’un groupe G sur un ensemble non-vide A est une fonction
σ : G× A→ A telle que σ(eG, a) = a pour tout a ∈ A et

σ(gh, a) = σ(g, σ(h, a))

pour tout g, h ∈ G et a ∈ A.

En fait, les deux définitions donnés sont équivalentes. Si on a un homomorphisme ρ : G→
Aut(A), alors la fonction σ : G × A → A définie par σ(g, a) = ρ(g)(a) est tel que σ(eG, a) =
ρ(eG)(a) = idA(a) = a et

σ(g, σ(h, a)) = σ(g, ρ(h)(a)) = ρ(g)(ρ(h)(a)) = (ρ(g) ◦ ρ(h))(a) = ρ(gh)(a) = σ(gh, a).

De façon similaire, étant donné une fonction σ : G × A → A qui satisfait la définition A.16,
la fonction ρ : G → Aut(A) définie par ρ(g)(a) = σ(g, a) est un homomorphisme. On utilisera
donc les deux notations de manière interchangeable. On fera aussi un abus de notation et on
écrira g · a ou même ga pour l’élément σ(g, a). Les conditions de la définition A.16 s’écrivent
alors comme (gh) · a = g(h · a) et eG · a = a.
Définition A.17 Une action d’un groupe G dans un ensemble A est appelé fidèle si l’applica-
tion ρ : G→ Aut(A) est-elle injective. Ceci se produit si et seulement si l’identité est l’unique
élément g ∈ G tel que g · a = a pour tout a ∈ A. Si ρ(eG) est l’unique automorphisme de A
avec un point fixe, l’action est dite libre.

� Exemple A.19 Tout groupe G agit sur lui-même de façon naturelle. Dans ce cas-là ρ : G×G→
G est simplement la multiplication de groupe.

σ(g, h) = gh

Cet action est libre (et donc fidèle). Tout groupe agit sur lui-même aussi pour conjugaison.
Dans ce cas, l’action est donné par

σ(g, h) = ghg−1.

Cet action est fidèle si et seulement si le centre de G est trivial. �
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� Exemple A.20 Étant donné un groupe G et un sous-groupe (pas nécessairement normal) H.
Dans ce cas G agit sur G/H en faisant

σ(g, aH) = (ga)H.

Cet action n’est pas fidèle. Si H est normal et g ∈ H, g · aH = aH pour tout a ∈ G. �

� Exemple A.21 Le groupe GL(n,Z) agit sur Zn par multiplication matricielle. Par exemple,
l’élément [

1 1
0 1

]
∈ GL(2,Z)

transforme le réseau Z2 de la façon suivante.

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

−→

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

Cet action est fidèle mais pas libre. La matrice que l’on a considéré fixe tous les vecteurs de la
forme (x, 0), pour x ∈ Z, par exemple. �

Remarquez que l’énoncé du théorème suivant ne semble pas simple, mais avec notre notation,
sa démonstration devient triviale.
Théorème A.13 — Cayley. Tout group agit de façon fidèle sur un ensemble. C’est-à-dire, tout
groupe est isomorphe à un sous-groupe d’un groupe de permutation.

Démonstration. Tout groupe agit sur lui-même de façon fidèle par multiplication. Donc G
est toujours isomorphe à un sous-groupe de Aut(G).

Définition A.18 Une action d’un groupe G dans un ensemble A est dite transitive si pour
tout a, b ∈ A il existe g ∈ G tel que g · a = b.

L’action de GL(n,Z) sur Zn n’est pas transitive parce que si a = (2, 4, . . . , 2n) et b =
(1, 1, . . . , 1), le théorème de Bachet-Bézout implique qu’il n’existe pas g ∈ GL(n,Z) tel que
g · a = b. L’action de G dans lui-même par conjugaison n’est pas transitive non plus. Toutefois,
l’action d’un groupe sur lui-même par multiplication et l’action de G sur G/H sont toujours
transitives.
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� Exemple A.22 Le groupe Sn agit de façon naturelle sur {1, 2, . . . , n} par permutation de ses
éléments. C’est-à-dire,

ρ : Sn × {1, . . . , n} → {1, . . . , n}
(σ,m) 7→ σ(m)

est une action de Sn sur {1, 2, . . . , n}. Cet action est fidèle et transitive. �

Définition A.19 L’orbite d’un élément a ∈ A est définie par

OG(a) := {g · a ∈ A | g ∈ G}.

On voit que la relation ∼ définie par a ∼ b si a ∈ OG(b) est une relation d’équivalence. En
particulier, les orbites forment une partition de A.

L’action induite dans chaque orbite est toujours transitive. C’est-à-dire, si x, y ∈ OG(a),
alors x = g1 · a et y = g2 · a pour g1, g2 ∈ G. On conclut que (g2g

−1
1 ) · x = y. Par conséquent,

pour comprendre toutes les actions, il suffit que l’on comprenne les actions transitives. Pour
cela on va utiliser le concept suivante.
Définition A.20 Le sous-groupe stabilisateur d’un élément a ∈ A est défini par

StabG(a) := {g ∈ G | g · a = a}.

Une action est fidèle si et seulement si⋂
a∈A

StabG(a) = {eG}.

Aussi, une action est libre si et seulement si StabG(a) = {eG} pour tout a ∈ A.

Proposition A.14 Soit a ∈ A et g ∈ G. Alors,

StabG(g · a) = g StabG(a)g−1.

Démonstration. On a h ∈ StabG(g · a) si et seulement si

h · (g · a) = g · a ⇐⇒ (hg) · a = g · a ⇐⇒ (g−1hg) · a = a,

qui est la définition de g−1hg ∈ StabG(a). Le résultat suit.

� Exemple A.23 Quand G agit sur lui-même par multiplication à gauche le stabilisateur est
toujours trivial

StabG(a) = {g ∈ G | ga = a} = {e}
et on a juste une orbite (puisque OG(e) = G). �

� Exemple A.24 Quand G agit sur lui-même par conjugaison le stabilisateur est le centralisateur

StabG(a) = {g ∈ G | gag−1 = a} = {g ∈ G | ga = ag} = ZG(a)

et l’orbite de a est la classe de conjugaison de a. �
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� Exemple A.25 Quand G agit sur G/H par multiplication à gauche le stabilisateur est

StabG(aH) = {g ∈ G | gaH = aH} = {g ∈ G | a−1ga ∈ H} = aHa−1

et on a juste une orbite (puisque gH ∈ OG(H) pour tout g ∈ G). �

On définit alors des isomorphismes entre actions. Cette notion nous aidera à tirer le résultat
le plus important de cette section : la formule des classes.
Définition A.21 Étant donné un groupe G, deux actions σ : G×A→ A et σ′ : G×A′ → A′

sont isomorphes s’il existe une bijection ϕ : A→ A′ telle que le diagramme

G× A G× A′

A A′

idG×ϕ

σ

ϕ

σ′

commute. C’est-à-dire, telle que g · ϕ(a) = ϕ(g · a) pour tout g ∈ G et a ∈ A. On appellera
les fonctions (pas nécessairement bijectives) qui satisfont cette propriété équivariantes.

On voit alors que toute action transitive est, en fait, « la même » que l’action de l’exemple
A.20.
Théorème A.15 Soit G un groupe agissant transitivement sur A et a ∈ A. Alors cette action
est isomorphe à multiplication à gauche dans G/ StabG(a).

Démonstration. Soit H = StabG(a) et ϕ : G/H → A définie par

ϕ(gH) := g · a.

D’abord, il faut montrer que ϕ est bien définie. Si g1H = g2H, alors g−1
1 g2 ∈ H. C’est-à-dire,

(g−1
1 g2)·a = a. Il suit que g1 ·a = g2 ·a. J’affirme donc que ϕ est un isomorphisme. L’équivariance

est triviale :

ϕ(g1(g2H)) = ϕ((g1g2)H) = (g1g2) · a = g1 · (g2 · a) = g1 · ϕ(g2H).

Pour montrer la bijectivité on observe que la fonction

Ψ : A → G/H

g · a 7→ gH

est bien définie (par le même raisonnement d’avant et par la transitivité) et est l’inverse de
ϕ.
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Corollaire A.16 — Formule des classes. Soit G un groupe fini agissant en un ensemble A et
a ∈ A. Alors, OG(a) est un ensemble fini et

|OG(a)| | StabG(a)| = |G|.

Démonstration. Puisque l’action induite dans OG(a) est transitive, le théorème précèdent
nous donne une bijection entre OG(a) et G/ StabG(a). Le résultat suit.

� En fait, cette même démonstration donne un résultat un peu plus fort : si a ∈ A et
b ∈ OG(a), on a |OG(a)| | StabG(b)| = |G|. En particulier, les stabilisateurs de tous les
éléments d’une orbite ont la même cardinalité.

La formule des classes est une méthode efficace pour calculer le nombre d’éléments d’une
orbite donnée. Par contre, le résultat que l’on verra ensuite nous permet de compter le nombre
d’orbites d’une action. Ce résultat est généralement appelé « Lemme de Burnside », mais
Cauchy le savait déjà environ 50 ans plus tôt.

Théorème A.17 — Lemme (qui n’est pas) de Burnside. Soit G un groupe fini agissant en un
ensemble A. Alors le nombre d’orbites est

1
|G|

∑
g∈G
|Ag|,

où Ag := {a ∈ A | g · a = a} est l’ensemble de points de A fixés par g.

Démonstration. D’abord on compte le nombre d’éléments de {(g, a) ∈ G× A | g · a = a} de
deux manières différentes :∑

g∈G
|Ag| =

∑
g∈G
|{a ∈ A | g · a = a}| = |{(g, a) ∈ G× A | g · a = a}| =

∑
a∈A
| StabG(a)|.

Ensuite, la formule des classes nous donne

1
|G|

∑
g∈G
|Ag| =

∑
a∈A

1
|OG(a)| .

Pour calculer la somme de droite, on observe que dans une orbite O, chaque a ∈ O contribue
à la somme de 1/|O| et il y a |O| de tels a. Il en résulte que chaque orbite contribue 1 à cette
somme. Le résultat suit.

L’exemple suivant illustre une application du théorème A.17 pour des problèmes de comp-
tage. Cet exemple est tiré du test AIME (American Invitational Mathematics Examination) de
1996.
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� Exemple A.26

Deux des carrés d’un damier 7× 7 sont peints en jaune, et le reste est peint en vert. Deux
colorations sont équivalentes si on peut obtenir une de l’autre en appliquant une rotation
dans le plan du damier. Combien de colorations inéquivalentes sont possibles ?

Soit A l’ensemble des
(

49
2

)
colorations possibles. Le groupe G = Z/4Z = {e, r, r2, r3} agit sur A

de façon naturelle : en faisant tourner le damier 90◦. Le nombre de colorations inéquivalentes
est le nombre de orbites de cette action. On calcule alors |Ag| pour chaque g ∈ G.
• Pour g = e, |Ag| = |A| = 1176.
• Pour g = r2, les points fixes apparaissent lorsque les deux carrés jaunes sont des réflexions

sur le centre. Donc, |Ag| = (49− 1)/2 = 24.
• Pour g = r ou g = r3 il n’y a pas des points fixes.

Le théorème A.17 implique qu’il existent

1176 + 24 + 0 + 0
4 = 300

colorations inéquivalentes possibles. �
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