
Homological Algebra

Gabriel Ribeiro

February 3, 2026





Introduction

Gabriel-from-the-future here. I originally wrote these notes for myself when I was
first learning homological algebra. They don’t go very far, but I still haven’t quite
found an introductory treatment that follows the same guiding principles.

In particular, I discussed abelian categories on their own terms, without pretending
that they are categories of modules over a ring. I took derived categories as the
starting point, rather than presenting them only after the classical approach. And I
have included detailed proofs throughout.

The notes stop a bit before derived functors, but I still think there are a few ideas here
that may be useful. Back in the day, some friends seemed to appreciate these notes,
so I’m making them publicly available in the hope that they might help someone else
to learn this beautiful subject.
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1 Abelian categories

Homological algebra deals extensively with the notions of kernel, image, exact se-
quences, chain complexes, and the like. This chapter will explain the most general
setting, that of abelian categories, in which these concepts make sense. Certainly, the
category ofA-modules has all the needed characteristics. Going even further, it is true
that every abelian category has a fully faithful embedding on A-Mod for some (not
necessarily commutative) ringA. However, when it is not too troublesome, we’ll study
abelian categories "on their own" for we believe that understanding arrow-theoretic
arguments and not becoming dependent on a difficult theorem can only be beneficial.

1.1 Additive categories

We begin our quest of understanding which properties a category should have in
order for exact sequences to make sense. A first problem is that our category should
have a distinguished object corresponding to the trivial module in A-Mod. In order to
allow for exact sequences, this object should be initial and final at the same time. We
arrive at our first definition.

Definition 1.1.1 Let A be a category. A zero-object is an object of A which is both initial
and final. We’ll always denote zero-objects as 0.

The reader should notice that even reasonable categories may fail to have initial
or final objects (the category of fields, for example, has neither). And even if they
exist, they may not coincide (as in Set or Ring). Nevertheless, Grp, Ab, and A-Mod are
examples of categories possessing zero-objects.

The existence of zero-objects in a category allows us to talk about zero-morphisms.

Definition 1.1.2 Let A be a category with a zero-object 0. A morphism ϕ : M → N

is called a zero-morphism if it factors through the zero-object 0. We’ll also denote
zero-morphisms by 0.

We observe that in a category with a zero-object, there is exactly one zero-morphism
from each object M to each object N: it’s just the composite of the unique morphism
M → 0 with the unique morphism 0 → N. In any of the aforementioned categories
which possess zero-objects, the zero morphism M→ N is the one sending every ele-
ment ofM to 0 ∈ N. Moreover, the composition of a zero-morphism with an arbitrary
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1 Abelian categories

morphism is again a zero-morphism. Indeed, the composition factors through 0.
In an abstract category, we have no means of defining kernels set-theoretically as

the subobjects composed of the elements which are sent to zero. Instead, we define a
kernel as a morphism by a suitable universal property.

Definition 1.1.3 — Kernel. Let ϕ : M → N be a morphism in a category A with a
zero-object 0. The kernel of ϕ is the equalizer of ϕ and the zero-morphism. In
other words, it is a morphism ι : K → M such that, whenever ζ : Z → M satisfies
ϕ ◦ ζ = 0, there exists a unique morphism Z→ Kmaking the diagram

K M N

Z

ι ϕ

0

ζ

commute. We denote both K and ι : K→M by kerϕ.

Once again, we observe that kernels are not guaranteed to exist even in reasonable
categories. For example, kernels may fail to exist in the category of finitely generated
A-modules whenever A is not noetherian.

In any of the previously mentioned categories with zero-objects, the universal prop-
erty of the kernel is satisfied by the inclusion map from the set-theoretic kernel. This
generalizes nicely to the categorical kernel. For that, we need another piece of nomen-
clature.

Definition 1.1.4 — Subobject. Let M be an object in a category A. We say that two
monomorphisms s : S → M and t : T → M are equivalent if there exists an
isomorphism S→ T making the diagram

S T

M

∼

s t

commute. In other words, s and t are equivalent if they are isomorphic in the
slice category A ↓M. A subobject of M is an equivalence class for this equivalence
relation.

The universal property of kernels implies that all kernels of a morphism M → N

belong to the same isomorphism class in A ↓ M. Thus, in order to prove that the
kernel ofM→ N is a subobject ofM it suffices to show that kernels are monic.

Proposition 1.1.1 Letϕ :M→ N be a morphism in a category A with a zero-object 0
and suppose that kerϕ : K→M is its kernel. Then kerϕ is a monomorphism and
so defines a subobject ofM.
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1.1 Additive categories

The reader should notice that the same proof shows that every equalizer is monic.

Proof. Let α,β : Z → K be two morphisms such that (kerϕ) ◦ α = (kerϕ) ◦ β and
let ζ be their common compositions. By the universal property of kernels, there is a
unique morphism Z→ Kmaking the diagram

K M N

Z

kerϕ ϕ

0

ζ

commute. But α and β are two such morphisms. It follows that α = β.

In most categories in algebra, kernels measure how far a morphism is from being
injective. The following propositions shows that the categorical kernel still, in some
sense, encodes this information.

Proposition 1.1.2 Let ϕ : M → N be a monomorphism in a category A with a
zero-object 0. Then kerϕ is the zero-morphism 0→M.

Proof. Suppose ζ : Z→M is a morphism such that ϕ ◦ ζ = 0. Since ϕ is a monomor-
phism, ϕ ◦ ζ = 0 = ϕ ◦ 0 means that ζ = 0 and so ζ factors uniquely through the
zero-object, making the diagram

0 M N

Z

ϕ

0

ζ

commute. This means that 0→M is the, necessarily unique, kernel of ϕ.

Proposition 1.1.3 Letϕ :M→ N be a morphism in a category A with a zero-object 0.
Then ϕ is a zero-morphism if and only if kerϕ is, up to isomorphism, the identity
onM.

Proof. Supposeϕ is the zero-morphism. Thenϕ◦idM = 0◦idM and so any morphism
ζ : Z → M factors uniquely through idM. Conversely, if idM is a kernel of ϕ, then
ϕ = ϕ ◦ idM = 0.

The main problems of the categorical kernel are the fact that they may not exist and,
even when they exist, it is not necessarily true that every monomorphism is a kernel,
as in A-Mod. For example, in the category of groups, kernels are normal subgroups
but monomorphisms correspond to all subgroups. All these problems will be solved
in the next section. For now, we observe that the dual notion (which inverses all the
arrows) of kernel is just as useful.
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1 Abelian categories

Definition 1.1.5 — Cokernel. Let ϕ : M → N be a morphism in a category A with a
zero-object 0. The cokernel of ϕ is the coequalizer of ϕ and the zero-morphism. In
other words, it is a morphism π : N → C such that, whenever β : N → Z satisfies
β ◦ϕ = 0, there exists a unique morphism C→ Zmaking the diagram

Z

M N C
ϕ

0

π

β

commute. We denote both C and π : N→ C by cokerϕ.

Before we prove any properties of the cokernel, we present how it works in some
categories, since the reader may be unfamiliar with it.

� Example 1.1.1 — Cokernels in A-Mod. Let ϕ : M → N be a morphism of A-modules.
Here, the cokernel of ϕ is the quotient map π : N→ N/ imϕ, where imϕ is the usual
set-theoretic image. Indeed, if β : N → P satisfies β ◦ ϕ = 0, then imϕ ⊂ kerβ and
the universal property of the quotient induces a unique morphism β̃ : N/ imϕ → P

which makes the diagram

P

M N N/ imϕ
ϕ

0

π

β
β̃

commute. In other words, π : N → N/ imϕ satisfies the universal property of the
cokernel. �

� Example 1.1.2 — Cokernels in Grp. Letϕ : G→ H be a morphism of groups. The same
argument as in A-Mod doesn’t work as the set-theoretical image may not be a normal
subgroup of H. Nevertheless, we may consider the smallest normal subgroup of H
containing imϕ, which we denote byN. Then the cokernel ofϕ becomes the quotient
map π : H → H/N. Indeed, if β : H → H ′ satisfies β ◦ ϕ = 0, then imϕ ⊂ kerβ and,
since kerβ is a normal subgroup of H containing imϕ, N ⊂ kerβ. Now the same
argument as before works, showing that π : H→ H/N satisfies the universal property
of the cokernel. �

� Example 1.1.3 — Cokernels in the category of Banach spaces. The same problem as
before happens frequently in topological settings. In the category of Banach spaces
with bounded (continuous) linear maps as morphisms, not every subspace defines a
quotient, only the closed ones. A similar reasoning as before shows that the cokernel
of a morphism T : X→ Y is the quotient map Y → Y/N, where N is the closure of the
set-theoretical image im T in Y. �
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1.1 Additive categories

It is actually the case that, whenever it exists, the cokernel of a morphismϕ :M→ N

is a quotient ofN just as the kernel is a subobject ofM. In order to make sense of that
in an arbitrary category, we invert the arrows in the definition 1.1.4.

Definition 1.1.6 — Quotient object. Let N be an object in a category A. We say that
two epimorphisms p : N → S and q : N → T are equivalent if there exists an
isomorphism S→ T making the diagram

N

S T

p q

∼

commute. In other words, p and q are equivalent if they are isomorphic in the
coslice category N ↓ A. A quotient object of N is an equivalence class for this
equivalence relation.

As before, it is clear by the universal property that all cokernels of a morphism
M→ N belong to the same isomorphism class inN ↓ A. So, by proving that cokernels
are epic, we prove that every cokernel is a quotient object.

Proposition 1.1.4 Let ϕ : M → N a morphism in a category A with a zero-object 0
and suppose that π : N → C is its cokernel. Then π is an epimorphism and so
cokerϕ is a quotient object of N.

Proof. We could do basically the same argument as in the proof of proposition 1.1.1,
but we’ll use this as an opportunity to understand a powerful idea: the duality
principle. Let α,β : C → D be morphisms such that α ◦ π = β ◦ π. Inverting all the
arrows, we see that πop : C→ N is the kernel ofϕop : N→M and πop ◦αop = πop ◦βop.
Since πop is a monomorphism by proposition 1.1.1, αop = βop and so α = β, proving
that π is an epimorphism.

By inverting all the arrows as above, we can easily prove dual versions of the
propositions 1.1.2 and 1.1.3, which we state below.

Proposition 1.1.5 Let ϕ : M → N be an epimorphism in a category A with a zero-
object 0. Then cokerϕ is the zero morphism N→ 0.

Proposition 1.1.6 Let ϕ :M→ N be a morphism in a category A with a zero-object.
Thenϕ is a zero-morphism if and only if cokerϕ is, up to isomorphism, the identity
on N.

Everything we did so far only makes sense given the existence of zero-morphisms
in the category under consideration. There’s a natural way in which a category may
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1 Abelian categories

be endowed with such morphisms.

Definition 1.1.7 — Preadditive category. A category A is said to be preadditive if each
set of morphisms HomA(M,N) is endowed with an abelian group structure, in such
a way that the composition maps are bilinear.

The exquisite reader may recognize that this is nothing but a category enriched over
Ab. Explicitly, in a preadditive category it makes sense to add or subtract morphisms
and this operation satisfies

ϕ ◦ (ψ1 +ψ2) = ϕ ◦ψ1 +ϕ ◦ψ2 and (ϕ1 +ϕ2) ◦ψ = ϕ1 ◦ψ+ϕ2 ◦ψ,

whenever those compositions exist.
A preadditive category A may still lack zero-objects. But, given a zero-object, we

have two natural notions of zero-morphism M → N: the unique morphism M → N

which factors through the zero object and the identity of HomA(M,N). It is reassuring
to know that they coincide.

Proposition 1.1.7 In a preadditive category A, the following conditions are equiva-
lent:

(a) A has an initial object;

(b) A has a final object;

(c) A has a zero-object.

In that case, the zero-morphisms are exactly the identities for the group structure
of the hom-sets.

Proof. Clearly, (c) implies both (a) and (b). Since the dual of a preadditive category is
also preadditive, it suffices to prove that (a) implies (c). Let I be an initial object. The
group HomA(I, I) has only one element and so idI coincides with the group identity
of HomA(I, I). Now, if ϕ :M→ I is any morphism, then

ϕ = idI ◦ϕ = (idI+ idI) ◦ϕ = idI ◦ϕ+ idI ◦ϕ = ϕ+ϕ

and so HomA(M, I) is the trivial group. This proves that I is also a final object. Finally,
if A has a zero-object 0, then the groups HomA(M,0) and HomA(0,N) are reduced to
their identities and so, by the fact that composition is bilinear, the zero-morphism
M→ 0→ N is the identity of HomA(M,N).

Observe that, in a preadditive category, two morphisms are equal if and only if their
difference in the corresponding hom-set is 0. This implies that a morphismϕ :M→ N

in a preadditive category is a monomorphism if and only if for all α : Z→M,

ϕ ◦ α = 0 =⇒ α = 0.
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1.1 Additive categories

Similarly, it is an epimorphism if and only if for all β : N→ Z,

β ◦ϕ = 0 =⇒ β = 0.

We are now in a position to prove a converse to the propositions 1.1.2 and 1.1.5.

Proposition 1.1.8 Let ϕ :M→ N be a morphism in a preadditive category A. Then
ϕ is a monomorphism if and only if kerϕ is the zero-morphism 0→M. Dually, ϕ
is an epimorphism if and only if cokerϕ is the zero morphism N→ 0.

Proof. The fact that a monomorphism has the zero-morphism as its kernel was proved
in proposition 1.1.2. Conversely, suppose that 0→M is a kernel for ϕ :M→ N, and
let ζ : Z → M be a morphism such that ϕ ◦ ζ = 0. The universal property implies
that ζ factors through 0→M and so ζ = 0, proving that ϕ is a monomorphism. The
statement about epimorphisms follows by duality.

In some sense, life is simpler in the world of modules, since finite products and
coproducts coincide. Fortunately, this is already the case in preadditive categories.

Theorem 1.1.9 Let M and N be two objects in a preadditive category. Given a third
object P, the following are equivalent:

(a) there exist natural projections πM : P → M and πN : P → N such that P
satisfies the universal property ofM×N;

(b) there exist natural injections ιM :M→ P and ιN : N→ P such that P satisfies
the universal property ofM

∐
N;

(c) there exist morphisms πM : P →M, πN : P → N, ιM :M→ P and ιN : N→ P

such that

πM ◦ ιM = idM, πN ◦ ιN = idN, πM ◦ ιN = 0, πN ◦ ιM = 0,

ιM ◦ πM + ιN ◦ πN = idP .

Moreover, under these conditions we have that

ιM = kerπN, ιN = kerπM, πM = coker ιN, πN = coker ιM.

If P satisfies any of the conditions above, we say that P is the direct sumM⊕N.

Proof. By duality, it suffices to prove the equivalence of (a) and (c). Given (a), we
use the universal property of products to obtain our desired morphisms ιM and ιN as
the unique morphisms that satisfy πM ◦ ιM = idM, πN ◦ ιN = idN, πM ◦ ιN = 0 and
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1 Abelian categories

πN ◦ ιM = 0:

M

M P

N

idM

0

ιM

πM

πN

and

M

N P

N.

0

idN

ιN

πM

πN

We then affirm that ιM ◦ πM + ιN ◦ πN = idP. Indeed, observe that the left-hand side
satisfies

πM ◦ (ιM ◦ πM + ιN ◦ πN) = πM ◦ ιM ◦ πM + πM ◦ ιN ◦ πN = πM + 0 = πM

πN ◦ (ιM ◦ πM + ιN ◦ πN) = πN ◦ ιM ◦ πM + πN ◦ ιN ◦ πN = 0+ πN = πN.

But then both ιM ◦πM+ ιN ◦πN and idP fit in the place of the dotted morphism which
makes the diagram

M

P P

N

πM

πN

πM

πN

commute. The uniqueness part of the universal property of products then implies
that they are equal, proving (c).

Now, given (c) and an object Q with morphisms γM : Q→M and γN : Q→ N, we
need to show that there is a unique morphism γ : Q→ P making the diagram

M

Q P

N

γM

γN

γ
πM

πN

commute. For the existence, we define γ := ιM ◦ γM + ιN ◦ γN. The diagram above
then commutes since

πM ◦ γ = πM ◦ ιM ◦ γM + πM ◦ ιN ◦ γN = γM + 0 = γM,

πN ◦ γ = πN ◦ ιM ◦ γM + πN ◦ ιN ◦ γN = 0+ γN = γN.
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1.1 Additive categories

Moreover, if γ ′ : Q→ P is another morphism making the diagram commute, then,

γ ′ = idP ◦γ
′ = (ιM ◦ πM + ιN ◦ πN) ◦ γ

′

= ιM ◦ πM ◦ γ ′ + ιN ◦ πN ◦ γ ′

= ιM ◦ γM + ιN ◦ γN = γ.

This proves (a). Assuming all the equivalent conditions for P to be the direct sum
M⊕N, we now show that ιM = kerπN. Since πN ◦ ιM = 0, it suffices to prove that if
ζ : Z → P satisfies πN ◦ ζ = 0, then there exists a unique morphism Z → M making
the diagram

M P N

Z

ιM
πN

0

ζ

commute. We affirm that πM ◦ζ is the desired morphism Z→M. Indeed, we observe
that

πM ◦ (ιM ◦ πM ◦ ζ) = πM ◦ ζ

πN ◦ (ιM ◦ πM ◦ ζ) = 0 = πN ◦ ζ

since πM ◦ ιM = idM and πN ◦ ιM = 0. As before, using the uniqueness part of
the universal property of products, we have that ιM ◦ πM ◦ ζ = ζ, proving that the
diagram above commutes. This is the unique morphism making it commute because,
as πM ◦ ιM = idM, ιM is a monomorphism.

We can prove that ιN = kerπM in the same way and then πM = coker ιN and
πN = coker ιM follow by duality.

A perk from the fact that direct sums in preadditive categories have both canonical
projections and canonical injections is that it allows us to write morphisms using
a matrix notation. If M1,M2,N1,N2 are four objects in a preadditive category, a
morphism

ϕ :M1 ⊕M2 → N1 ⊕N2

is completely determined by the four morphisms

ϕ11 = π1 ◦ϕ ◦ ι1 :M1 → N1

ϕ12 = π1 ◦ϕ ◦ ι2 :M2 → N1

ϕ21 = π2 ◦ϕ ◦ ι1 :M1 → N2

ϕ22 = π2 ◦ϕ ◦ ι2 :M2 → N2.

Henceforth we will represent such a morphism ϕ by the matrix
(
ϕ11 ϕ12
ϕ21 ϕ22

)
.
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1 Abelian categories

Using the correspondence between A-module morphisms A→ A and elements of A,
this is nothing but the matrix notation used in linear algebra to describe A-module
morphisms A⊕n → A⊕m. Given another morphism

ψ : N1 ⊕N2 → P1 ⊕ P2,

the matrix representation of the compositionψ◦ϕ is simply the matrix product of the
individual matrices. Similarly, the sum of two morphisms M1 ⊕M2 → N1 ⊕ N2 is
represented by the sum of the individual matrices. It is clear that this notation allows
us to describe morphisms of the form

n⊕

i=1

Mi →

m⊕

j=1

Nj

for any positive integers n,m.
Finally, we impose the existence of zero-objects and binary products. This suffices

to guarantee the existence of finite products and coproducts, which coincide by the
theorem 1.1.9.

Definition 1.1.8 — Additive category. A preadditive category A is additive if it has a
zero-object and binary products.

The prototypical example of an additive category surely is A-Mod but Ab and the
category of Banach spaces with continuous linear maps are also examples of additive
categories. Nevertheless, Grp is not additive since finite products and coproducts do
not coincide, and neither is the category of Banach spaces with linear contractions as
finite products and coproducts are not isometric.

Even though additive categories do not suffer from some of the problems we met
before, they may still fail to have kernels or cokernels. For example, the category of
finitely generatedA-modules, whenA is not noetherian, is additive but has morphisms
without kernels. Furthermore, even when the additive category in consideration has
kernels and cokernels, the usual first isomorphism theorem may not hold. We discuss
those questions in the next section.

We finish this section with another interesting consequence of the theorem 1.1.9:
the preadditive structure in an additive category is unique.

Proposition 1.1.10 Let A be a category with a zero-object and binary products. Then
A has at most one abelian group structure on its hom-sets.

Proof. We endow A with any preadditive structure, and then we’ll show that the
addition of morphisms is actually determined by the limit-colimit structure of A.

Let ϕ1, ϕ2 : M → N be two morphisms in A. We define a map α : M → M ⊕M

by the universal property of products and a map β : N ⊕ N → N by the universal
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1.2 Abelian categories

property of coproducts:

M

M M⊕M

M

idM

idM

α

π ′
M

πM

and

N

N⊕N N.

N

ιN

idN

β

ι ′N

idN

We observe that, by the theorem 1.1.9 and the uniqueness of the universal property
of products, the equations

πM ◦ (ιM + ι ′M) = πM ◦ ιM + πM ◦ ι ′M = idM+0 = idM = πM ◦ α,

π ′

M ◦ (ιM + ι ′M) = π ′

M ◦ ιM + π ′

M ◦ ι ′M = 0+ idM = idM = π ′

M ◦ α

imply that α = ιM + ι ′M. The same exact reasoning shows that β = πN + π ′

N.
Now, we affirm that the compositionM→M⊕M→ N⊕N→ N, where the map

ψ :M⊕M→ N⊕N in the middle is given by

(
ϕ1 0

0 ϕ2

)
,

is the sum ϕ1 +ϕ2. Indeed, the composition is

β ◦ψ ◦ α = (πN + π ′

N) ◦ψ ◦ (ιM + ι ′M)

= πN ◦ψ ◦ ιM + π ′

N ◦ψ ◦ ιM + πN ◦ψ ◦ ι ′M + π ′

N ◦ψ ◦ ι ′M

= ϕ1 + 0+ 0+ϕ2 = ϕ1 +ϕ2

by the very definition of ψ.

1.2 Abelian categories

As we saw, whenever kernels and cokernels exist, they behave reasonably well. How-
ever, their possible lack of existence prevents us from going further. Moreover, despite
the fact that kernels are always monomorphisms and cokernels are always epimor-
phisms, there’s no guarantee that every monomorphism is a kernel and that every
epimorphism is a cokernel. It just so happens that demanding these properties is
enough for us to have the first isomorphism theorem.
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1 Abelian categories

Definition 1.2.1 — Abelian category. An additive category A is abelian if it possesses
kernels and cokernels, if every monomorphism is the kernel of some morphism
and if every epimorphism is the cokernel of some morphism.

For now, our only real example of an abelian category isA-Mod and its variants, such
as Ab, the category of finitely generated modules over a noetherian ring, the category
of finite abelian groups, their opposites, and so forth. But the reader shouldn’t worry
about having few examples; a plethora of abelian categories lie ahead.

In an abelian category, every monomorphism is the kernel of some morphism. We
can actually be more precise.

Proposition 1.2.1 In an abelian category A, every monomorphism is the kernel of its
cokernel and every epimorphism is the cokernel of its kernel.

Proof. Let ϕ : M → N be a monomorphism which is the kernel of some morphism
β : N→ Z. Since A is abelian, ϕ has a cokernel π : N→ C. The universal property of
the cokernel shows that β factors through π.

Z

M N C
ϕ π

β

We show that ϕ satisfies the universal property defining the kernel of π. Let K → N

be a morphism whose composition with π is the zero-morphism.

Z

M N C

K

ϕ π

β

0

By the commutativity of the diagram, K→ N→ Z is also the zero-morphism. But ϕ
is the kernel of β and so there exists a unique induced morphism K → M, proving
our claim. The statement about epimorphisms follows by duality.

This proposition implies a quick criterion for deciding when a full subcategory of
an abelian category is abelian.

Corollary 1.2.2 Let A be an abelian category and let C be a full subcategory. Suppose
that the zero-object of A is in C and that C is closed under binary sums, kernels,
and cokernels. Then C is also abelian.
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1.2 Abelian categories

Proof. The only thing we have to verify is that every monomorphism is the kernel of
some morphism and that every epimorphism is the kernel of some morphism. Now,
letϕ be a monomorphism in C. This implies that its kernel in C is the zero-morphism
but, since kernels in C and A coincide, ϕ is also a monomorphism in A. We observe
that, as C is closed under cokernels, ψ := cokerϕ is a morphism in C. Since A is
abelian, the preceding proposition implies that ϕ satisfies the universal property of
kerψ in A and, a fortiori, in C. This proves that every monomorphism in C is the kernel
of some morphism in C. The result about epimorphisms follows by duality.

Recall that in any category, isomorphisms are both monic and epic. The converse
may fail to hold even in usual categories, such as Ring, where the inclusion Z → Q is a
monomorphism and an epimorphism but is clearly not an isomorphism. Luckily, the
proposition 1.2.1 also implies that the converse holds in abelian categories.

Corollary 1.2.3 Let ϕ : M → N be a morphism in an abelian category A. Then ϕ is
an isomorphism if and only if it is both a monomorphism and an epimorphism.

Proof. If ϕ is both monic and epic, its kernel is 0 → M and its cokernel is N → 0.
Furthermore, by proposition 1.2.1,ϕ is the kernel ofN→ 0 and the cokernel of 0→M.
Now consider the diagram below.

N

0 M N 0

idN

ϕ

Since N → N → 0 is the zero morphism and ϕ is the kernel of N → 0, we obtain a
unique morphism ψ : N→Mmaking the diagram

N

0 M B 0

idN

ψ

ϕ

commute. Asϕ◦ψ = idN, this shows thatϕ has a right-inverse. Similarly, the fact that
ϕ is the cokernel of 0 → M implies the existence of a unique morphism η : N → M

such that the diagram
M

0 M N 0
ϕ

idM
η

commutes. It follows that ϕ has both a left-inverse η and a right-inverse ψ. Thus,
η = ψ is a two-sided inverse of ϕ and so ϕ is an isomorphism. The converse holds in
every category.

13



1 Abelian categories

We observe that this corollary implies that the category of Banach spaces with
bounded linear maps is not abelian. A bounded linear map T : X→ Y is a monomor-
phism if it’s injective and an epimorphism if im T is dense in Y. But there ex-
ists monomorphisms with dense image which are not isomorphisms; the inclusion
ℓ1 → ℓ2, for example.

Earlier, we said that demanding every monomorphism to be a kernel and every
epimorphism to be a cokernel is enough to guarantee the first isomorphism theorem.
In order to understand how we should even enunciate such a result, we have to make
sense of images in abelian categories. As with kernels and cokernels, this is best done
via a suitable universal property.

Let’s translate our intuitive notion of the image of a morphism ϕ :M→ N in Set to
a purely arrow-theoretic statement. The main point in Set is that imϕ is the smallest
subset of N to which we can restrict the codomain of ϕ to. In other words, we can
factor ϕ :M→ N as

M imϕ N,

where imϕ → N is injective and imϕ is the smallest subset of N which allows this
decomposition. Switching to categorical terms, we arrive at the following universal
property: the image of ϕ : M → N is a monomorphism ι : K → N such that ϕ
factors through ι and that is initial with these properties. That is, if L→ N is another
monomorphism through whichϕ also factors, then it exists a unique morphismK→ L

such that the diagram

L

M K N
ϕ

ι

commutes. In an arbitrary category, it could very well happen that no morphism
ι : K→ N satisfies this universal property. Luckily, this is never the case in the realm
of abelian categories.

Proposition 1.2.4 Let ϕ : M → N be a morphism in an abelian category, and let
ι : K → N be the kernel of cokerϕ. Then ι is a monomorphism through which ϕ
factors, and it is initial with these properties.

Proof. It is clear that ι is a monomorphism by the fact that it is a kernel. Since
ι : K→ N is the kernel of cokerϕ : N→ Cϕ, the diagram

M N Cϕ

K

ϕ cokerϕ

0

ι

14



1.2 Abelian categories

commutes. The universal property of the kernel then implies the existence of a
morphism M → K factoring ϕ through ι. We now show that ι satisfies the desired
universal property. Let λ : L → N be another monomorphism through which ϕ
factors, and consider its cokernel N→ Cλ.

L

M K N

Cλ

λ

ϕ

ι

cokerλ

Sinceϕ factors through λ, the compositionM→ N→ Cλ is 0. The universal property
of cokerϕ induces a morphism Cϕ → Cλ:

L

M K N Cϕ

Cλ.

λ

ϕ

ι

cokerλ

cokerϕ

Observe that since K → N → Cϕ is the zero-morphism, so is K → N → Cλ. But
λ is a monomorphism, which implies that it is the kernel of coker λ. Its universal
property then implies the existence of a unique morphismK→ Lmaking the diagram
commute.

Since all there is to know about the image of a morphism ϕ is encoded in the
imϕ = ker(cokerϕ) mantra, we use it to define images from now on.

Definition 1.2.2 — Image. Let ϕ :M → N be a morphism in an abelian category. Its
image, denoted imϕ, is the kernel of cokerϕ.

As it is probably clear by now, the image of a morphismϕ :M→ N ofA-modules is
simply the inclusion I→ N, where I is the set-theoretical image of ϕ. Indeed, cokerϕ
is simply N→ N/I and its kernel is nothing but I→ N.

Inverting all the arrows, we arrive at the dual notion of the image of a morphism.

Definition 1.2.3 — Coimage. Let ϕ : M → N be a morphism in an abelian category.
Its coimage, denoted coimϕ, is the cokernel of kerϕ.

By duality, the proposition 1.2.4 gives a universal property for the coimage of a
morphism ϕ :M → N in an abelian category: it is an epimorphism π :M → C such

15



1 Abelian categories

that ϕ factors through π and such that if M → D is another epimorphism through
which ϕ also factors, then it exists a unique morphism D→ Cmaking the diagram

M C N

D

π

ϕ

commute.
Now, our sought-for first isomorphism theorem is simply a particular relation be-

tween the image and the coimage of a given morphism. In A-Mod, the coimage of a
morphism ϕ :M → N is the quotient map M →M/K, where K is the set-theoretical
kernel of ϕ. The first isomorphism theorem in this context amounts to the fact that
we can factor ϕ :M→ N as

M M/K I N,
coimϕ

ϕ

imϕ

where the morphism in the middle, induced by ϕ, is an isomorphism. In this form,
the result holds in arbitrary abelian categories.

Theorem 1.2.5 — First isomorphism theorem. Let ϕ : M → N be a morphism in an
abelian category. Then ϕ can be decomposed as

M C K N,

ϕ

∼

whereM→ C is the coimage ofϕ,K→ N is its image andC→ K is an isomorphism.

Proof. The universal properties of the image and of the coimage give two decompo-
sitions of ϕ as follows:

K

M N.

C

imϕ

ϕ

α

coimϕ β

In order to use the universal property of imϕ to obtain an induced morphism K→ C,
we must prove that β is a monomorphism. (Similarly, we could prove that α is an
epimorphism and use the universal property of coimϕ.) Since every monomorphism

16



1.2 Abelian categories

is the kernel of its cokernel, ker(coimβ) = ker(coker(kerβ)) = kerβ. It suffices then to
show that ker(coimβ) = 0. We observe that the composition of coimβ and coimϕ

M C N ′ N
coimϕ

ϕ

β

coimβ

is an epimorphism through which ϕ factors. The universal property of coimϕ then
implies that coimβ is an isomorphism, concluding that kerβ = 0 and so β is a
monomorphism.

As we said above, the universal property of imϕ induces a morphism ψ : K → C

making the diagram

K

M N

C

imϕ

ψ

coimϕ

α

β

commute. Since β ◦ ψ = imϕ is a monomorphism, so is ψ. Similarly, the fact that
ψ ◦ α = coimϕ is an epimorphism implies that ψ has the same property. It follows
that ψ is an isomorphism, and so it suffices to consider its inverse to be our desired
morphism C→ K.

As we’ll see, this theorem even gives an alternative definition of abelian category.
For now, suppose thatϕ :M→ N is a morphism in an additive category that possesses
kernels and cokernels. In this context, it is not true that ker(cokerϕ) : K→ N satisfies
the universal property of the image of ϕ1 but, since (cokerϕ) ◦ ϕ = 0, the universal
property of kernels implies that ϕ factors through ker(cokerϕ).

M N

K

ϕ

ker(cokerϕ)

Similarly, the universal property of cokernels implies that M → K factors through

1For a counterexample, consider the morphismϕ : Z → Z given by multiplication by 2 in the category
of torsion-free abelian groups. The reader may verify that this is an additive category, with kernels
and cokernels, and that ker(cokerϕ) = id : Z → Z. Then ϕ is another monomorphism through
which ϕ factors, but there’s no morphism induced by the universal property of images.

17



1 Abelian categories

coker(kerϕ) :M→ C via a morphism ϕ : C→ K.

M N

C K

ϕ

coker(kerϕ)

ϕ

ker(cokerϕ)

Our previous theorem shows that ϕ is an isomorphism whenever we’re dealing with
an abelian category. We affirm that this property also suffices to define an abelian
category.

Proposition 1.2.6 Let A be an additive category that possesses kernels and cokernels.
Then A is abelian if and only if for every morphism ϕ : M → N, the induced
morphism ϕ : C→ K is an isomorphism.

Proof. One direction was shown in the previous theorem. Conversely, suppose that
ϕ :M→ N is a monomorphism. Then kerϕ = 0 and so ϕ factors as

M N

M K.

ϕ

idM

ϕ

ker(cokerϕ)

This implies that ϕ satisfies the universal property of ker(cokerϕ). (Since ϕ and
ker(cokerϕ) define the same subobjects of N.) By duality, it follows that every epi-
morphism is a cokernel.

1.3 Unions and intersections

LetM be an object in a (not necessarily abelian) category A. As we saw in the beginning
of this chapter, a subobject ofM is an equivalence class of monomorphisms s : S→M.
Given another subobject defined by t : T → M, we say that s is smaller than t if there
exists a morphism S→ T , automatically monic, making the diagram

S T

M

s t

commute. This is independent of the representatives chosen for each equivalence
class. Also, the morphism S → T is unique whenever it exists. This endows the
collection of all subobjects of M with the structure of a partially ordered class.2 In
particular, we are able to define the union and the intersection of a family of subobjects.

2It need not be a set, even when the category in question is abelian. We say that a category is
well-powered if the subobjects of every object constitute a set.

18



1.3 Unions and intersections

Definition 1.3.1 LetM be an object of a category A. The union, if it exists, of a family
of subobjects of M is their supremum in the partially ordered class of subobjects.
Similarly, the intersection of a family of subobjects is their infimum.

We’ll often use the customary symbols ∪ and ∩ to denote the union and the inter-
section of subobjects, leaving their target implicit.

In A-Mod, the union of two submodules S and T of a given module M is simply
their sum S+ T . In other words, it’s the image of the canonical morphism S⊕ T →M,
which sends (s, t) to s+ t. This description generalizes to arbitrary abelian categories.

Proposition 1.3.1 Let A be an abelian category and Si → M be a finite collection of
subobjects. The union of those subobjects exists and is given by the image of the
natural map

⊕
i Si →M.

Proof. Factoring each Si →M through the coproduct and then factoring the resulting
morphism through its image we obtain the diagram below.

Si

⊕
i Si K M

In particular, K → M is a subobject which is greater than all of the Si → M. Now,
suppose that T → M is another subobject through which all the Si → M factor. The
universal property of coproducts induces a dashed morphism making the diagram

Si

T

⊕
i Si K M

commute. (The lower triangle commutes by the unicity of the induced morphism⊕
i Si → M.) Finally, the universal property of images induces a morphism K → T ,

proving that K→M is indeed the supremum of the Si →M.

The same proof shows that the preceding description also works for infinite unions,
replacing the direct sums by coproducts, whenever those coproducts exist in our
category.

In a wide range of cases, the proposition below describes binary intersections.

Proposition 1.3.2 Let A be a category with pullbacks. The intersection of two sub-
objects S→M and T →M exists and is given by their pullback.
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1 Abelian categories

Proof. We recall that, in absolute generality, pullbacks preserve monomorphisms. [3,
Proposition 2.5.3] That is, if

P T

S M
s

tt ′

s ′

is a cartesian diagram and s is a monomorphism, then so is s ′. Similarly for t and t ′,
of course. In particular, P →M is a subobject which is less than S→M and T →M.
Moreover, P →M is their infimum, due to the universal property of pullbacks.

Once again, the same proof shows that the intersection of a family of subobjects
Si →M exists and is given by the limit of the diagram constituted of those morphisms,
as long as such limit exists.

Fortunately, abelian categories possess pullbacks3 and they have simple descrip-
tions. In A-Mod, the pullback of two morphisms ϕ : M → P and ψ : N → P is given
by submodule ofM⊕N determined by the elements (m,n) satisfying ϕ(m) = ψ(n).
Basically the same description works more generally. In particular, the collection of
subobjects of every object in an abelian category form a lattice.

Proposition 1.3.3 Let s : S → M and t : T → M be two morphisms in an abelian
category A. The kernel of the morphism

(s,−t) : S⊕ T →M

satisfies the universal property of the pullback S ×M T . Dually, if s ′ : N → S and
t ′ : N→ T are two morphisms in A, the cokernel of

(
s ′

−t ′

)
: N→ S⊕ T

satisfies the universal property of the pushout S
∐
N T .

Proof. Let πS : S⊕ T → S and πT : S⊕ T → T be the canonical projections. Moreover,
denote the kernel of (s,−t) by κ : P → S⊕ T , and pose s ′ := πT ◦ κ, t ′ := πS ◦ κ. Being
more precise, the first statement is that the square

P T

S M

t

s

t ′

s ′

3Abelian categories are even finitely complete and finitely cocomplete, since all finite limits can be
constructed from terminal objects, pullbacks and equalizers. [3, Proposition 2.8.2]
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1.3 Unions and intersections

is cartesian. We observe that

(s,−t) = idS⊕T ◦(s,−t) =

(
πS
πT

)
◦ (s,−t) = s ◦ πS − t ◦ πT .

This implies the commutativity of the square above, given that

s ◦ t ′ − t ◦ s ′ = s ◦ πS ◦ κ− t ◦ πT ◦ κ = (s,−t) ◦ κ = 0.

We now prove that the square satisfies the universal property of pullbacks. Let
ϕ : Q→ S and ψ : Q→ T be such that s ◦ϕ = t ◦ψ. Since

(s,−t) ◦

(
ϕ

ψ

)
= s ◦ϕ− t ◦ψ = 0,

the universal property of kernels gives a unique morphism µ : Q → P making the
diagram

Q P

S⊕ T


ϕ

ψ




µ

κ

commute. Moreover, we have that

s ′ ◦ µ = πT ◦ κ ◦ µ = πT ◦

(
ϕ

ψ

)
= ψ

and, similarly, that t ′ ◦ µ = ϕ. The unicity of these factorizations follows from the
unicity in the universal properties of kernels and of products. As usual, the other
statement follows by duality.

As we saw in the proof of proposition 1.3.2, pullbacks preserve monomorphisms.
Dually, pushouts preserve epimorphisms. In abelian categories we have even more.

Corollary 1.3.4 Let A be an abelian category. Suppose that

P T

S M
s

tt ′

s ′

is a cartesian diagram in A, and that s is an epimorphism. Then s ′ is also an epimor-
phism and the square is also a pushout. Dually, the pushout of a monomorphism
is a monomorphism, and the corresponding square is also a pullback.
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1 Abelian categories

Proof. We keep the same notations as in the proof of the previous proposition. We
begin by proving that (s,−t) is an epimorphism. Let ρ :M→ N be a morphism such
that ρ ◦ (s,−t) = 0. Then, denoting by ιS : S → S ⊕ T the natural injection, we have
that

0 = ρ ◦ (s,−t) ◦ ιS = ρ ◦ (s ◦ πS − t ◦ πT ) ◦ ιS = ρ ◦ s.

This implies that ρ = 0, for s is an epimorphism. In particular, (s,−t) = coker κ due
to proposition 1.2.1.

Now, let σ : T → Z be a morphism such that σ ◦ s ′ = 0. Since s ′ = πT ◦ κ, the
universal property of cokernels gives a morphism ζ :M→ Zmaking the diagram

P S⊕ T M

T Z

κ (s,−t)

πT

σ

ζ
s ′

commute. But the equation

ζ ◦ s = ζ ◦ (s,−t) ◦ ιS = σ ◦ πT ◦ ιS = 0

implies that ζ = 0, since s is an epimorphism. Finally, the fact that πT is an epimor-
phism and satisfies σ ◦ πT = 0 implies that σ = 0, proving that s ′ is an epimorphism
as well.

We now show that our cartesian square is also cocartesian. Let η : S → Q and
λ : T → Q be two morphisms making the diagram

P T

S M

Q

t ′

s

t

s ′

λ

η

commute. Observe that, by the universal property of pullbacks, there exists a dashed
morphism making the diagram

K

P T

S M

Q

t ′

s

t

s ′

λ

η

kers

0
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1.3 Unions and intersections

commute. This implies that η ◦ ker s = 0, and so the universal properties of cokernels
(since s is the cokernel of ker s) gives a morphism ξ : M → Q satisfying η = ξ ◦ s.
Moreover, we have that

λ ◦ s ′ = η ◦ t ′ = ξ ◦ s ◦ t ′ = ξ ◦ t ◦ s ′.

It follows that λ = ξ ◦ t, since s ′ is an epimorphism. In other words, ξ makes the
diagram

P T

S M

Q

t ′

s

t

s ′

λ

η

ξ

commute. Such a morphism is unique, due to s being an epimorphism. We conclude
the result. The other statement follows by duality.

Given two subobjects S→M and T →M, we can naturally form the commutative
diagram below.

S ∩ T T

S S ∪ T

Since we can always complete this square into a diagram of the form

S ∩ T T

S S ∪ T

M,

the proposition 1.3.2 gives that our original square is always cartesian. The same
reasoning, along with the preceding corollary, implies that it’s also cocartesian. The
fact that this square is, at the same time, a pullback and a pushout is usually phrased
as the motto binary unions in abelian categories are effective. In other words, to define a
morphism S ∪ T → P, it suffices to find morphisms S→ P and T → P which agree on
the intersection S ∩ T .

A final interesting result, which will be the soul of the next few propositions, can
also be proved using the same circle of ideas.
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1 Abelian categories

Proposition 1.3.5 Let A be an abelian category. Given a commutative square

P T

S M
s

tt ′

s ′

in A, consider the induced morphisms k : K ′ → K and c : C ′ → C between the
kernels and cokernels of s ′ and s:

K ′ P T C ′

K S M C,

t

s ′

s

t ′

kers

kers ′

k

cokers

cokers ′

c

If the original square is cartesian, then k is an isomorphism. Dually, if the original
square is cocartesian, then c is an isomorphism.

Proof. Suppose that our square is cartesian, for the other statement follows by duality.
The universal property of pullbacks gives a dashed morphism, making the diagram

K

P T

S M

t

s ′

s

t ′
kers

0

p

commute. Then, since K → P → T is zero, the universal property of kernels gives a
dashed morphism k ′ : K→ K ′ making the diagram

K ′ P T

K S M

t

s ′

s

t ′

kers

p

kers ′

k ′

commute. Checking the commutativity of the previous diagrams, we remark that

t ′ ◦ (ker s ′) ◦ k ′ ◦ k = t ′ ◦ p ◦ k = (ker s) ◦ k = t ′ ◦ (ker s ′)

s ′ ◦ (ker s ′) ◦ k ′ ◦ k = s ′ ◦ p ◦ k = 0 ◦ k = s ′ ◦ (ker s ′).
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1.3 Unions and intersections

In other words, ker s ′ and (ker s ′) ◦ k ′ ◦ k are two morphisms making the diagram

K ′

P T

S M

t

s ′

s

t ′

kers ′

(kers ′)◦k ′◦k

commute. The uniqueness in the universal property of pullbacks implies that they’re
equal. Since ker s ′ is a monomorphism, k ′ ◦ k = idK ′ . Furthermore,

(ker s) ◦ k ◦ k ′ = t ′ ◦ (ker s ′) ◦ k ′ = ker s.

As ker s is monic, we have k ◦ k ′ = idK; proving that k is an isomorphism.

We basically defined an abelian category in order to have the first isomorphism
theorem. Somewhat surprising, all the other isomorphism theorems are also true in
this generality.

If t : T →M is a subobject, we’ll denote the target of coker t byM/T , as it would be
inA-Mod. We remark that if S→M is a subobject containing t, then S/T is naturally a
subobject ofM/T . That is, there exists a dashed monomorphism making the diagram

T

S M

S/T M/T

commute. Indeed, the universal property of the cokernel on the left gives the existence,
and the universal property of the cokernel on the right implies that the trapezoid above
is a pushout; proving that the dashed morphism is monic.

Proposition 1.3.6 Let t : T →M be a subobject in an abelian category. Then,

u : {subobjects ofM containing t} → {subobjects ofM/T }

(S→M) 7→ (S/T →M/T)

is a lattice isomorphism. Moreover, if S→M is a subobject containing T , the objects

(M/T)/(S/T) and M/S

are isomorphic.
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1 Abelian categories

Before we begin the proof, recall that a partially ordered class may be seen naturally
as a category. In this context, a lattice is a partially ordered class with binary products
and coproducts. Similarly, a morphism of lattices can be seen as a functor preserving
such (co)products.

Proof. In order to prove that u is an isomorphism of lattices, we define an inverse.
Consider the function v, which sends a subobject Q → M/T to the top arrow in the
pullback

P M

Q M/T.

Since T → M → M/T is zero, the universal property of pullbacks gives a dashed
morphism making the diagram

T

P M

Q M/T

coker t

t

0

commute, proving that P → M contains T → M. It’s clear that both u and v are
order-preserving. In other words, they are functors. Applying u to the subobject
P →M, we obtain the commutative diagram below.

T

P M

P/T

Q M/T

Observe that the morphism T → P → Q → M/T is zero, due to the commutativity
of the diagram. Actually, T → P → Q is already zero, as Q → M/T is monic. Then,
the universal property of cokernels gives a morphism P/T → Q making the diagram
above commute. This morphism is both a monomorphism and an epimorphism, by
the commutativity of the triangles on its sides. In other words, u ◦ v is the identity
functor.
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1.4 Exactness in abelian categories

Now, let S→M be a subobject containing t : T →M. As we say when defining the
map S/T →M/T , the commutative square

S M

S/T M/T

is cocartesian. The corollary 1.3.4 implies that it’s also cartesian, proving that v ◦ u is
also the identity functor. Since u is an equivalence of categories, it preserves products
and coproducts. In particular, it’s an isomorphism of lattices.

The isomorphism between (M/T)/(S/T) and M/S follows from the proposition
1.3.5, applied to the cocartesian square above.

The last isomorphism theorem also follows from the machinery developed in this
section.

Proposition 1.3.7 Let S→M and T →M be subobjects in an abelian category. Then
the objects

(S ∪ T)/T and S/(S ∩ T)

are isomorphic.

Proof. Since binary unions in abelian categories are effective, the commutative dia-
gram

S ∩ T T

S S ∪ T

is a pushout. The result then follows from the same proposition 1.3.5.

1.4 Exactness in abelian categories

After all this foundational work, we can at long last understand how exact sequences
work in an abelian category.

Definition 1.4.1 — Exact sequence. Consider a sequence of objects and morphisms in
an abelian category:

· · · M N P · · · .
ϕ ψ

We say that this sequence is exact at N if kerψ and imϕ define the same subobject
of N. It is exact if it’s exact at every object.
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1 Abelian categories

As it is the case in A-Mod, most properties about morphisms can be stated in terms
of exact sequences. For example,

0 M N
ϕ

is an exact sequence if and only if ϕ is a monomorphism. Likewise,

0 M N P
ϕ ψ

is an exact sequence if and only if ϕ is a kernel of ψ. Also,

0 M N P 0.
ϕ ψ

is exact if and only if ϕ is a kernel of ψ and ψ is cokernel of ϕ. These last exact
sequences are so important that they deserve a name.

Definition 1.4.2 — Short exact sequence. An exact sequence of the form

0 M N P 0.
ϕ ψ

is said to be a short exact sequence.

Another reason for the importance of short exact sequences is that we can check
the exactness of an arbitrary sequence by intertwining it with short exact sequences.
Let’s illustrate this procedure with a sequence of the form

M1 M2 M3 M4.
ϕ1 ϕ2 ϕ3

Using the theorem 1.2.5, we can enlarge our diagram to be

C2 C4

M1 M2 M3 M4

C1 C3 C5.

imϕ1 imϕ3

ϕ1

coimϕ1

ϕ2

coimϕ2

ϕ3

coimϕ3

cokerϕ3kerϕ1

imϕ2

Using that kernels and images are monic and that cokernels and coimages are epic,

28



1.4 Exactness in abelian categories

we obtain a yet larger diagram which is exact at all the Ci, atM1, and atM4.

0 0 0 0

C2 C4

M1 M2 M3 M4

C1 C3 C5

0 0 0 0

imϕ1 imϕ3

ϕ1

coimϕ1

ϕ2

coimϕ2

ϕ3

coimϕ3

cokerϕ3kerϕ1

imϕ2

Now, we affirm that our original sequence is exact if and only if those four diagonal
sequences are exact. Indeed, the only place where the diagonal sequences could lack
exactness is at M2 and M3. Being exact at M2 means that ker(coimϕ2) = im(imϕ1)

which is equivalent to kerϕ2 = imϕ1. The same holds for exactness at M3, and it’s
clear that this procedure generalizes to sequences of arbitrary length.

A particularly frequent kind of short exact sequence appears when we consider the
direct sum of two objects M and N. Since M⊕N fulfills both the role of the product
and the coproduct of M and N, we have a natural injection ι : M → M ⊕ N and a
natural projection π :M⊕N→ N. These objects fit nicely into a sequence

0 M M⊕N N 0,
ι π

which is exact since ι is the kernel of π and π is the cokernel of ι. (Theorem 1.1.9.)
This is the prototypical example of a split exact sequence.

Definition 1.4.3 — Split exact sequence. A short exact sequence

0 M N P 0

is said to split if there’s a commutative diagram

0 M N P 0

0 M ′ M ′ ⊕ P ′ P ′ 0

∼ ∼ ∼

ι π

in which all the vertical maps are isomorphisms, ι is the natural injection and π is
the natural projection.

Understanding which exact sequences are split will allow us to understand injective
and projective objects better, to understand when a morphism has a right- or left-
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1 Abelian categories

inverse, and to gain a refined version of the first isomorphism theorem. The following
theorem takes care of these last two tasks.

Theorem 1.4.1 — Splitting lemma. A short exact sequence of the form

0 M N P 0
ϕ ψ

is split if and only if one of the conditions below is satisfied:

(a) there exists a morphism σ : P → N such that ψ ◦ σ = idP;

(b) there exists a morphism ρ : N→M such that ρ ◦ϕ = idM.

Proof. If the sequence is split, then by composing the natural injections/projections
with the vertical maps in the definition 1.4.3 we obtain the desired morphisms σ : P →

N and ρ : N→M.
Conversely, we suppose that (a) holds and prove that the sequence is split. Our

approach will be based on the construction of a morphism ρ : N → M as in (b) such
that

ρ ◦ϕ = idM, ψ ◦ σ = idP, ρ ◦ σ = 0, ψ ◦ϕ = 0,

ϕ ◦ ρ+ σ ◦ψ = idN .

This is enough for the theorem 1.1.9 to imply that N is isomorphic to the direct sum
ofM and P. We already have two of the equations: ψ ◦ σ = idP and ψ ◦ϕ = 0.

In order to find a morphism ρ such that ϕ ◦ ρ + σ ◦ ψ = idN, we consider the
morphism idN−σ ◦ψ. Observe that

ψ ◦ (idN−σ ◦ψ) = ψ−ψ ◦ σ
︸ ︷︷ ︸
idP

◦ψ = 0.

The universal property of kernels, by the fact thatϕ = kerψ, implies the existence of a
unique morphism ρ : N→M such thatϕ◦ρ = idN−σ◦ψ, proving another equation.

Finally, we observe that, since ϕ is a monomorphism,

ϕ ◦ ρ ◦ϕ = (idN−σ ◦ψ) ◦ϕ = ϕ− σ ◦ψ ◦ϕ
︸ ︷︷ ︸
0

= ϕ

implies that ρ ◦ϕ = idM. Similarly,

ϕ ◦ ρ ◦ σ = (idN−σ ◦ψ) ◦ σ = σ− σ ◦ψ ◦ σ
︸ ︷︷ ︸
idP

= 0

and so ρ ◦ σ = 0, proving the last equation.
The proof that (b) implies that the sequence is split is basically the same.
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As promised, the splitting lemma gives a necessary and sufficient condition for a
morphism to have a right- or left-inverse. We recall that a morphism that has a right-
inverse is necessarily an epimorphism and that a morphism that has a left-inverse is
necessarily a monomorphism.

Corollary 1.4.2 Let ϕ :M→ N be a morphism in an abelian category. Then ϕ has a
left-inverse if and only if the sequence

0 M N C 0
ϕ cokerϕ

is split, and it has a right-inverse if and only if the sequence

0 K M N 0
kerϕ ϕ

is split.

The splitting lemma also provides a refinement of the first isomorphism theorem.
For that, we observe that a morphism ϕ :M→ N determines a sequence

0 K M I 0,
kerϕ coimϕ

which is exact since kerϕ is the kernel of coimϕ = coker(kerϕ) (every monomorphism
is the kernel of its cokernel) and coimϕ is the cokernel of kerϕ. We also recall that,
due to the first isomorphism theorem, I is isomorphic to the source of imϕ.

Corollary 1.4.3 Let ϕ : M → N be a morphism in an abelian category, let kerϕ :

K→M be its kernel and coimϕ :M→ I be its coimage. If there exists a morphism
σ : I → M such that (coimϕ) ◦ σ = idI or a morphism ρ : M → K such that
ρ ◦ kerϕ = idK, thenM ∼= K⊕ I.

In the category of finite-dimensional vector spaces over a field, this result holds
unconditionally, since two such vector spaces are isomorphic if and only if they have
the same dimension. Thus, this corollary follows from the rank-nullity theorem. But,
in general abelian categories, the decompositionM ∼= K⊕ I need not hold.4

1.5 Functors on abelian categories

Just as all the useful morphisms on a group must preserve its structure, so must the
useful functors on a preadditive category.

4Just take the projection Z → Z/2Z, for example.
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Definition 1.5.1 — Additive functor. Let A and B be two preadditive categories. A
functor F : A → B is said to be additive if, for all objectsM,N in A, the induced map

HomA(M,N) → HomB(F(M), F(N))

ϕ 7→ F(ϕ)

is a morphism of groups.

Basically all the functors defined between preadditive categories that we’ll en-
counter are additive. Some examples are HomA(M,−) and, in A-Mod, the tensor
product functorM⊗A −.

There’s an interesting criterion for a functor to be additive. For that, we observe that
if F : A → B is a functor between additive categories andM,N are two objects of A, then
the universal property of products induces a morphism F(M⊕N) → F(M)⊕ F(N):

F(M)

F(M⊕N) F(M)⊕ F(N)

F(N),

F(πM)

F(πN)

where F(M) ⊕ F(N) → F(M) and F(M) ⊕ F(N) → F(N) are the natural projections.
Similarly, the universal property of coproducts induces a morphism F(M) ⊕ F(N) →

F(M⊕N).

Proposition 1.5.1 Let F : A → B be a functor between additive categories. Then the
following are equivalent:

(a) F is additive;

(b) the natural map F(M)⊕ F(N) → F(M⊕N) is an isomorphism for everyM,N
in A;

(c) the natural map F(M⊕N) → F(M)⊕ F(N) is an isomorphism for everyM,N
in A.

Proof. Due to the fact that an additive functor preserves composition and addition of
morphisms, the theorem 1.1.9 gives automatically that (a) implies (b) and (c). Also,
(b) and (c) are equivalent since the uniqueness part of the universal property of the
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coproduct

F(M)

F(M)⊕ F(N) F(M⊕N) F(M)⊕ F(N)

F(N)

F(ιM)

F(ιN)

implies that F(M)⊕ F(N) → F(M⊕N) → F(M)⊕ F(N) is the identity map.
Now, we assume (b) and (c) and prove (a). Recall from the proof of the proposi-

tion 1.1.10 that the sum of two morphisms ϕ1, ϕ2 : M → N can be written as the
composition

M M⊕M N⊕N N.

ϕ1+ϕ2


ϕ1 0

0 ϕ2




We apply the functor F and consider the following diagram

F(M) F(M⊕M) F(N⊕N) F(N),

F(M)⊕ F(M) F(N)⊕ F(N),

F




ϕ1 0

0 ϕ2







F(ϕ1) 0

0 F(ϕ2)




which we claim to be commutative. Observe that the composition of the morphisms
on the top is F(ϕ1 + ϕ2) and the composition of the morphisms on the bottom is
F(ϕ1) + F(ϕ2). The commutativity of the diagram then implies (a).

Both triangles commute by the very definition of the morphisms F(M) ⊕ F(M) →

F(M⊕M) and F(N⊕N) → F(N)⊕F(N). The commutativity of the inner square is just
as natural, but a little notationally awkward. Let’s denote the morphisms involved as
follows:

F(M⊕M) F(N⊕N)

F(M)⊕ F(M) F(N)⊕ F(N).

F(ψ)

β

ψ̃

α
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Recall that ψ :M⊕M→ N⊕N is the unique morphism such that

π1 ◦ψ ◦ ι1 = ϕ1 π1 ◦ψ ◦ ι2 = 0

π2 ◦ψ ◦ ι1 = 0 π2 ◦ψ ◦ ι2 = ϕ2.

By applying the functor F to these relations and recalling that F(ιi) = α ◦ ι̃i and
F(πi) = π̃i ◦ β, where ι̃i : F(M) → F(M) ⊕ F(M) and π̃i : F(N) ⊕ F(N) → F(N) are
the natural inclusions and projections, we get that β ◦ F(ψ) ◦ α satisfies the defining
equations for (

F(ϕ1) 0

0 F(ϕ2)

)
.

This proves the commutativity of the square.

Our next goal is to prove that if C is a small category and A is an abelian category,
then the category of all functors and natural transformations Fun(C,A) is also abelian.
This is a generalization of a fact that will become very important to us in the future:
the category of presheaves over an abelian category is abelian.

�
The reader might wonder the raison d’être of the set-theoretic condition above. If C

is not small, then the objects of Fun(C,A) doesn’t even form a class. If it were a class,

then a functor C → A would be a set, since a set is defined to be a collection that is

a member of some class. But then we could use the axiom of replacement to deduce

that the class of objects of C is a set.

For that, we have to understand how some limits and colimits work in a functor
category. The general statement is that "limits and colimits in a functor category are
computed pointwise". We prefer to understand concretely the particular cases we’re
interested in, but the reader can find the general theorem in [3] (proposition 2.15.1) or
in [33] (theorem 6.2.5).

We begin by a simple observation: the functor C → A which sends every object of
C to the zero-object of A is a zero-object of Fun(C,A). Moreover, if F,G are objects of
Fun(C,A), a natural transformation F → G is a zero-morphism if and only if all its
components F(C) → G(C) are zero-morphisms in A.

Now, let’s deal with kernels. Suppose that ϕ : F → G is a natural transformation
in Fun(C,A). For each C ∈ C, the morphism ϕC : F(C) → G(C) has a kernel kerϕC :

K(C) → F(C). We observe that this assignment is functorial. If f : C → D is a
morphism in C, then the diagram

K(C) F(C) G(C)

K(D) F(D) G(D)

kerϕC ϕC

F(f) G(f)

kerϕD ϕD
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is commutative and so the universal property of kernels will induce a morphism
K(C) → K(D) making the diagram commute as long as the morphism

K(C) F(C)

F(D) G(D)

kerϕC

F(f)

ϕD

is zero. But this is evident since the commutativity of the diagram implies that this
morphism is equal to

K(C) F(C) G(C)

G(D).

kerϕC

0

ϕC

G(f)

Moreover, the uniqueness part of the universal property of kernels shows that if
G : D→ E is another morphism in C, then the bigger diagram

K(C) F(C) G(C)

K(D) F(D) G(D)

K(E) F(E) G(E)

kerϕC

F(f)

ϕC

G(f)

kerϕD ϕD

F(g) G(g)

kerϕE ϕE

commutes. We conclude that C 7→ K(C) defines a functor C → A and that K → F is a
morphism in Fun(C,A) whose composition with ϕ : F→ G is zero. Does it satisfy the
universal property of kerϕ? Let ζ : Z → F be another natural transformation which
satisfiesϕ◦ζ = 0. By the universal property of kernels, there exist unique morphisms
Z(C) → K(C) for every object C of C making the diagram

K(C) F(C) G(C)

Z(C)

kerϕC
ϕC

0

ζC

commute. These morphisms form a natural transformation since, if f : C → D is a
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morphism in C, then the diagram

K(C) F(C)

K(D) F(D)

Z(C)

Z(D)

kerϕC

K(f) F(f)

ζC

kerϕD

Z(f)

ζD

commutes since kerϕD is a monomorphism. This proves that K→ F satisfies the uni-
versal property of kerϕ. Since Fun(C,A) is a preadditive category (with the addition
of morphisms given pointwise), this implies that a morphism ϕ : F→ G in Fun(C,A)

is a monomorphism if and only if kerϕ is the zero-morphism 0 → F and if and only
if it is a monomorphism pointwise.

It should be clear that the same argument shows that cokernels in Fun(C,A) exist
and are computed pointwise. Moreover, a morphism ϕ : F → G in Fun(C,A) is an
epimorphism if and only if cokerϕ is the zero-morphism G → 0 and if and only if it
is an epimorphism pointwise.

Finally, basically the same arguments show that, if F and G are two objects of
Fun(C,A), the functor F⊕G defined by

(F⊕G)(C) := F(C)⊕G(C) and (F⊕G)(f) :=

(
F(f) 0

0 G(f)

)

satisfies the universal property of products and coproducts in Fun(C,A), with the
natural injections and projections being given by the respective pointwise injections
and projections.

We’re now ready to prove our desired result.

Proposition 1.5.2 Let C be a small category and A be an abelian category. Then the
category of all functors and natural transformations Fun(C,A) is abelian.

Proof. After all our preliminary work, all there’s left to prove is that every monomor-
phism is the kernel of its cokernel and that every epimorphism is the cokernel of
its kernel. This also follows quickly from our previous discussion: if ϕ : F → G is
a monomorphism then its components ϕC : F(C) → G(C), for every object C of C,
are monic. Since A is abelian, each ϕC is the kernel of its cokernel. But kernels and
cokernels are computed pointwise and so ϕ is also the kernel of its cokernel. The
same argument shows that every epimorphism is the cokernel of its kernel.
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1.5 Functors on abelian categories

We illustrate how to apply the corollary 1.2.2 by proving that the category of additive
functors is also abelian.

Corollary 1.5.3 Let C be a small additive category and A be an abelian category.
Then the full subcategory Add(C,A) of Fun(C,A), composed of additive functors
and natural transformations, is abelian.

Proof. It is clear that the zero-object of Fun(C,A) is additive, and so it is also the
zero-object of Add(C,A). If F andG are two additive functors, their direct sum acts on
morphisms by

(F⊕G)(f) =

(
F(f) 0

0 G(f)

)
.

Since the sum of morphisms is represented by the sum of matrices, the additivity of
both F and G implies that of F⊕G. Finally, we show that, if ϕ : F→ G is a morphism
in Add(C,A) and kerϕ : K → F is its kernel in Fun(C,A), K is an additive functor.
Indeed, if f, g : C→ D are two morphisms in C,

kerϕD ◦ K(f+ g) = F(f+ g) ◦ kerϕC = (F(f) + F(g)) ◦ kerϕC

= F(f) ◦ kerϕC + F(g) ◦ kerϕC

= kerϕD ◦ K(f) + kerϕD ◦ K(g) = kerϕD ◦ (K(f) + K(g)),

and so K(f + g) = K(f) + K(g) by the fact that kerϕD is a monomorphism. The same
argument shows that the target of cokerϕ is also additive.

We’ll now delve into the relationship between functors and exact sequences. Unfor-
tunately, being additive does not guarantee that a functor preserves exact sequences.5

For example, consider the exact sequence of abelian groups

0 Z Z
Z

2Z
0,

·2

where the map Z → Z is multiplication by two. Upon tensorization by Z/2Z we get
the sequence

0
Z

2Z

Z

2Z

Z

2Z
0,

0

which is not exact since the zero-morphism Z/2Z → Z/2Z is not a monomorphism.
The additive functors that indeed preserve some kind of exact sequences are so special
that they deserve a name.

5Or perhaps that’s a blessing, for this issue is at the heart of homological algebra.
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Definition 1.5.2 — Exact functor. Let F : A → B be an additive functor between abelian
categories. Then F is said to be left exact when it preserves exact sequences of the
form

0 M N P,

right exact when it preserves exact sequences of the form

M N P 0,

and exact when it preserves short exact sequences.

We observe that our discussion right after the definition 1.4.2 implies that an exact
functor preserves exact sequences of any length, not only short exact sequences.

Proposition 1.5.4 Let F : A → B be an additive functor between abelian categories.
The following equivalences hold:

(a) F is left exact if and only if it preserves finite limits;

(b) F is right exact if and only if it preserves finite colimits;

(c) F is exact if and only if it preserves finite limits and finite colimits.

Proof. By duality, it suffices to prove (a). We observe that a sequence of the form

0 M N P
ϕ ψ

is exact if and only if ϕ = kerψ. This implies right away that if F preserves finite
limits, then it preserves kernels and so it is left exact. For the converse, recall that
finite limits can be built up from binary products, terminal objects and equalizers.
(Proposition 2.8.2 in [3].) Since F is additive, it preserves binary products and zero-
objects. Moreover, if F is left exact, then it preserves kernels. It suffices then to show
that F preserves equalizers. But the equalizer of a pair ϕ,ψ : M → N is simply the
kernel of ϕ−ψ. The result follows.

More often than not, what we’ll use to prove that a functor is left or right exact is
the corollary below, which follows from our good old mottos "right adjoints preserve
limits" and its dual "left adjoints preserve colimits".6

Corollary 1.5.5 Let F : A → B be an additive functor between abelian categories. If F
is a right adjoint then it is left exact and if F is a left adjoint then it is right exact.

6We remember that right adjoints preserve limits by the mnemonic RAPL.
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1.6 Diagram chasing

In the abelian category A-Mod of modules over a ring A, exact sequences have simple
characterizations in terms of elements. Indeed, the sequence of A-modules

M N P
ϕ ψ

is exact if and only if ψ(ϕ(m)) = 0 for all m ∈ M and if ψ(n) = 0, for some n ∈ N,
implies the existence of m ∈ M such that n = ϕ(m). Using this, proofs involving
exact sequences can usually be done by pointing fingers to a diagram and observing
the fate of some elements. This technique is called diagram chasing.

To illustrate this technique, we prove the following result in two ways; first using
universal properties and then, in A-Mod, using diagram chasing.

Proposition 1.6.1 — Four lemma. Consider the following diagram with exact rows in
an abelian category A:

M1 M2 M3 M4

N1 N2 N3 N4.

α β γ δ

If β and δ are monomorphisms and α is an epimorphism, then γ is a monomor-
phism. Dually, if α and γ are epimorphisms and δ is a monomorphism, then β is
an epimorphism.

As usual, we prove only the first part of the result, since the second part follows by
duality.

Proof using universal properties. Let ρ : P →M3 be a morphism such that γ◦ρ = 0.
Our goal is to prove that ρ = 0. Since the diagram commutes, the morphism

M1 M2 M3 M4

N1 N2 N3 N4

P

α β γ δ

ρ

is zero and, as δ is monic, so is P → M3 → M4. The universal property of kernels
then implies that ρ factors through the kernel K→M3 ofM3 →M4, which coincides
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with the image ofM2 →M3 by exactness.

M1 M2 K M3 M4

N1 N2 N3 N4

P

α β γ δ

ρ

We consider the pullback M2 ×K P and observe that the commutativity of the
diagram implies that the morphism below is zero.

M1 M2 K M3 M4

N1 N2 N3 N4

PM2 ×K P

α β γ δ

ρ

By the universal property of kernels,M2×KP →M2 → N2 factors through the kernel
K ′ → N2 of N2 → N3, which coincides with the image of N1 → N2 by exactness.

M1

N1 K ′ N2

M2 K M3 M4

PM2 ×K P

N3 N4

α β γ δ

ρ

We consider the pullbackM1×K ′ (M2×KP) and observe that, sinceβ is a monomor-
phism, the upper square (in black below) commutes.

M1

N1 K ′ N2

M2 K M3 M4

PM2 ×K P

N3 N4

M1 ×K ′ (M2 ×K P)

α β γ δ

ρ
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Remark that both M2 → K and M1 → N1 → K ′ are epimorphisms. The corollary
1.3.4 then implies that so are the arrows in black below.

M1

N1 K ′ N2

M2 K M3 M4

PM2 ×K P

N3 N4

M1 ×K ′ (M2 ×K P)

α β γ δ

ρ

The composition of the arrows above with ρ is zero, since M1 → M2 → M3 is. But
the fact that they are epic implies that ρ = 0, finishing the proof.

We now prove the same result, when A = A-Mod, using diagram chase. Observe
that, since we’re now proving this result for only one abelian category, we can’t use a
duality argument. (The opposite category of A-Mod is rarely a category of modules.)
Nevertheless, we’ll still only prove the first part below, for our last proof took care of
both parts. We encourage the reader to remark that, in the proof below, every step is
the only one possible.

Proof by diagram chasing. Letm be an element ofM3 such that γ(m) = 0. Our goal
is to prove thatm = 0. Observe thatm is sent to 0 in N4 by the composition

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0.

γ

Since the diagram commutes, m is also sent to 0 by going through the other side of
the square

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m ?

0.

δ

But δ is injective, som is in the kernel of the morphismM3 →M4. (That is, our "?"
above is actually zero.) By exactness of the top row, there exists m ′ ∈ M2, which is
sent tom byM2 →M3.

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0

0m ′

41



1 Abelian categories

Since the middle square commutes, n := β(m ′) is in the kernel of N2 → N3. So, by
exactness of the lower row, there exists n ′ ∈ N1 whose image through N1 → N2 is n.

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0

0m ′

nn ′

β

The morphism α is epic, so there existsm ′′ ∈M1 which is sent to n ′. This element
is actually sent tom ′ viaM1 →M2 due to the fact that β is monic. We conclude that
m is the image ofm ′′ under the compositionM1 →M2 →M3.

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0

0m ′

nn ′

m ′′

But this composition is zero, proving the result.

By gluing both versions of the four lemma, we obtain the corollary below.

Corollary 1.6.2 — Five lemma. Consider the following diagram with exact rows in an
abelian category A:

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5.

α β γ δ ε

If β and δ are isomorphisms, α is an epimorphism, and ε is a monomorphism, then
γ is an isomorphism.

Proof. The first part of the four lemma, applied to the diagram

M1 M2 M3 M4

N1 N2 N3 N4,

α β γ δ

yields that γ is a monomorphism. Similarly, the second part of the four lemma,
applied to the diagram

M2 M3 M4 M5

N2 N3 N4 N5,

β γ δ ε
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yields that γ is an epimorphism. This concludes the proof.

The preceding discussion hopefully conveyed that proofs by diagram chasing are
often simpler than their arrow-theoretic counterparts. It would be great if we could
use the same technique even when dealing with abelian categories other than A-Mod.
The theorem below establishes precisely that.

Theorem 1.6.3 — Freyd-Mitchell. Let A be a small abelian category. Then there exists
a fully faithful exact embedding of A into A-Mod for some (not necessarily commu-
tative) ring A.

While all the necessary prerequisites for the (unfortunately long) proof of this result
were already discussed, we prefer to direct the interested reader to the wonderful proof
in [4] and confine ourselves to an explanation of how this result is used in practice.

LetV : A → A-Mod be the functor given by the Freyd-Mitchell theorem. For now, we
define a pseudo-elementm of an objectM ∈ A to be an element of V(M). We shall abuse
notation and write m ∈ M for this relation. The action of a morphism ϕ : M → N,
denoted as ϕ(m), on a pseudo-element m is given simply by V(ϕ)(m). We gather a
few properties of those notions.

Proposition 1.6.4 Let A be a small abelian category. If ϕ :M→ N is a morphism in
A, we have that:

(a) ϕ is monic if and only if for allm ∈M, ϕ(m) = 0 impliesm = 0;

(b) ϕ is epic if and only if for all n ∈ N, there existsm ∈M such that ϕ(m) = n;

(c) we may construct a morphismϕ by describing its action of pseudo-elements.

Moreover,

(d) two morphisms ϕ1, ϕ2 :M → N are equal if and only if ϕ1(m) = ϕ2(m) for
allm ∈M;

(e) a sequence M ϕ
−→ N

ψ
−→ N is exact if and only if ψ(ϕ(m)) = 0 for all m ∈ M

and if ψ(n) = 0, for some n ∈ N, implies the existence of m ∈ M such that
n = ϕ(m).

Proof. The item (c) translates the fullness of the functor V in theorem 1.6.3, and the
item (d) translates it’s faithfulness. Since V is exact, it preserves finite limits and
colimits; this gives one direction on the items (a), (b) and (e). The other direction
follows from the fact that a fully faithful functor reflects limits and colimits, which is
clear from their universal properties.

Finally, we address the elephant in the room: most abelian categories are not small.
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This is not as bad as it seems, and we explain why. Let A be an abelian category and
D be a diagram in A. Consider the sequence

B0 ⊂ B1 ⊂ · · · ⊂ Bn ⊂ · · · ,

where B0 is the full subcategory of A generated byD and Bn+1 is the full subcategory
of A generated by the limits and colimits of all finite diagrams in Bn. Then

B :=

∞⋃

n=0

Bn

is a full subcategory of A stable under finite limits and colimits. In particular, B is an
abelian category due to the corollary 1.2.2. If the diagram D is small (which is the
case in basically all applications), so is the abelian category B, and then we can apply
the theorem 1.6.3 in B.

In a nutshell, the Freyd-Mitchell theorem allows us prove basically every result
about exact sequences in abelian categories as if we were in a category of modules.
And we may even use duality arguments!

Henceforth, we’ll prefer arrow-theoretic constructions whenever they aren’t too
troublesome, but we will freely use elements when they simplify or shed light on
some arguments.

We end this section with arguably the most important diagram chase: the snake

lemma. Its statement involves a diagram of the form

M1 M2 M3 0

0 N1 N2 N3,

α β γ

whose rows are exact, where we expand the kernels and cokernels of the vertical
morphisms and insert the natural morphisms induced from the universal properties:

Kα Kβ Kγ

M1 M2 M3 0

0 N1 N2 N3

Cα Cβ Cγ.

kerα kerβ kerγ

α β γ

cokerα cokerβ cokerγ

We’re now in a position to state this important result.
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Theorem 1.6.5 — Snake lemma. Consider the following commutative diagram with
exact rows in an abelian category:

M1 M2 M3 0

0 N1 N2 N3.

α β γ

We denote by Kα, Kβ and Kγ the sources of kerα, kerβ and kerγ. Similarly, Cα, Cβ
and Cγ denote the targets of the cokernels thereof. Then, there exists a morphism
δ : Kγ → Cα making the sequence

Kα Kβ Kγ Cα Cβ Cγ
δ

exact. Moreover, if M1 → M2 is a monomorphism, then so is Kα → Kβ, and if
N2 → N3 is an epimorphism, then so is Cβ → Cγ.

Before we delve into the proof, we observe that, even though there may be many
morphisms δ : Kγ → Cα which satisfy the conclusion above7, there’s a canonical one
that will be the one in consideration whenever we talk about the snake lemma.

We construct the morphism δ using elements as follows: letm be an element of Kγ.
Since kerγ is a monomorphism, we can viewm naturally as an element ofM3. Due to
the fact thatM2 →M3 is an epimorphism, there exists a liftm ′ ofm toM2, which we
then map toN2 as β(m ′). By the commutativity of the diagram, the image of β(m ′) to
N3 is zero, proving that β(m ′) is in the image of N1 → N2. Since the latter is monic,
we denote the element ofN1 whose image byN1 → N2 is β(m ′) by the same symbol.
Finally, δ(m) is the image of β(m ′) in the cokernel of α.

Kα Kβ Kγ

M1 M2 M3

N1 N2 N3

Cα Cβ Cγ

0

0

m

mm ′

β(m ′)β(m ′)

δ(m)

kerα kerβ kerγ

α β γ

cokerα cokerβ cokerγ

kerγ

β

cokerα

In order for this morphism to be well-defined, we need to check whether a different
choice for the lift m ′ would change the image δ(m). If m ′′ is another choice, then

7If δ satisfies the conclusion of the snake lemma, then so does −δ.
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1 Abelian categories

m ′ −m ′′ is in the kernel ofM2 →M3 and so in the image ofM1 →M2. Let m̃ ∈M1

be one element mapping to m ′ −m ′′. Its image in Cα is zero, since M1 → N1 → Cα
is the zero-morphism.

M1 M2 M3

N1 N2 N3

Cα Cβ Cγ

0

0

0m ′ −m ′′m̃

α(m̃)

0

α β γ

cokerα cokerβ cokerγ

α

cokerα

The commutativity of the diagram then implies that δ(m) is independent of the choice
of the lift.

Proof of theorem 1.6.5.
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In the previous chapter, we saw that only the most distinguished additive functors
turns out to be exact. Nevertheless, the image of an exact sequence

M N P
ϕ ψ

by an additive functor F is still special, for it satisfies F(ψ)◦F(ϕ) = F(ψ◦ϕ) = F(0) = 0.
The sequences of objects and morphisms in which the composition of two consecutive
morphisms is zero are called complexes and compose the main topic of the present
chapter. We’ll see that there are many contexts in which associating a particular
complex to a mathematical object provides useful information about the aforesaid
object.

2.1 Basic definitions

We begin with the precise definition of a complex.

Definition 2.1.1 — Complex. Let A be a (not necessarily abelian) category. A cochain

complex (M•, d•) in A is a sequence of objects and morphisms

· · · Mi−1 Mi Mi+1 · · ·
di−2 di−1 di di+1

such that di ◦ di−1 = 0 for all i.

In some applications, it is useful for the indices to be descending. In this case, the
indices are usually written as subscripts

· · · Mi+1 Mi Mi−1 · · ·
di+2 di+1 di di−1

and the corresponding object is said to be a chain complex. Since most of the complexes
that we’ll encounter are cochain complexes, we’ll just call them complexes and denote
them byM•. Of course, we can always setMi :=M−i and see a chain complexM• as
the cochain complexM−•.

Also important are the ways complexes can interact with each other. For that, we
gather all the complexes in A in a new category C(A).
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2 Complexes and cohomology

Definition 2.1.2 — Category of complexes. Let A be a category. An object in the category

of complexes C(A) is a complex in A and a morphismψ• :M• → N• is a commutative
diagram

· · · Mi−1 Mi Mi+1 · · ·

· · · Ni−1 Ni Ni+1 · · ·

di−1
M•

ψi−1

di
M•

ψi ψi+1

di−1
N• di

N•

in A. The morphisms di :Mi →Mi+1 are said to be the differentials of the complex.

Other usual variants of the category C(A) may be concocted by considering com-
plexes which are bounded in some sense. For example, we let C+(A) denote the
full subcategory of C(A) composed of the complexes M• which are bounded below,
i.e., for which Mi = 0 for all i ≪ 0. Similarly, we consider the categories C−(A) of
bounded-above complexes and Cb(A) of complexes which are bounded above and
below. A shorthand notation for all these categories is C∗(A).

Proposition 2.1.1 Let A be an abelian category. Then the categories of complexes
C∗(A) are abelian.

Proof. Due to the corollary 1.2.2, it suffices to prove that C(A) is abelian. Consider
the category Z, which has an object for each integer and a single non-trivial morphism
between each consecutive integers (from the smallest to the biggest). Then C(A) is a
full subcategory of Fun(Z,A), which is abelian by the proposition 1.5.2. Appealing
once again to the corollary 1.2.2, it suffices to see that the category of complexes is
closed under direct sums, kernels and cokernels.

Binary direct sums of complexes form another complex since, for all i, the diagram

Mi−1 Mi Mi+1

Mi−1 ⊕Ni−1 Mi ⊕Ni Mi+1 ⊕Ni+1

di−1
M• di

M•

ιi+1
M•πi−1

M•

commutes. Moreover, if ψ• : M• → N• is a morphism of complexes, we have a
commutative diagram

Ki−1 Ki Ki+1

Mi−1 Mi Mi+1

kerψi−1 kerψi kerψi+1

di−1
M• di

M•

By the complex condition, Ki−1 → Ki → Ki+1 → Mi+1 is the zero-morphism and,
since kerψi+1 is a monomorphism, Ki−1 → Ki → Ki+1 is also already zero, proving
that the category of complexes is closed under kernels. A dual argument shows that
it is closed under cokernels.
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We now observe some natural functors which involve the category of complexes.
First of all, as it was seen in the proof above, our category A can be embedded in C∗(A).
Indeed, the functor ι : A → C∗(A) which sends an object A of A to the complex

· · · 0 0 A︸︷︷︸
degree 0

0 0 · · ·

is fully faithful (it is also exact when A is abelian). Another natural functor on C∗(A)

is the shift functor:

C∗(A) → C∗(A)

M• 7→M[n]•,

defined by M[n]i := Mn+i and diM[n]• := (−1)ndn+iM• . The sign on the differential
doesn’t change the isomorphism class of the complex but simplifies some other equa-
tions. Also, an additive functor between additive categories F : A → B determines a
functor between the categories of complexes

C∗(F) : C∗(A) → C∗(B)

given by setting the image of M• to be the complex defined by F(Mi) and F(diM•).
Whenever there’s no risk of confusion, we’ll denote this functor simply by F.

There’s another, even more interesting, functor defined on the category of complexes
C∗(A)when A is abelian. Consider a complexM•. The complex condition di◦di−1 = 0
and the universal property of kernels imply that di−1 factors through kerdi:

· · · Mi−1 Mi Mi+1 · · · .

Ki

di−2 di−1 di di+1

kerdi

But kerdi is a monomorphism and so the universal property of images yields a unique
factorization of imdi−1 through kerdi:

Ii−1

· · · Mi−1 Mi Mi+1 · · · .

Ki

imdi−1

di−2 di di+1

kerdi

The induced morphism Ii−1 → Ki is always a monomorphism (for imdi−1 is) and is
epic if and only if the complex is exact atMi. Thus, its cokernel measures the lack of
exactness of the complex atMi.
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Definition 2.1.3 — Cohomology. LetM• be a complex in an abelian category A. Its i-th
cohomology, denotedHi(M•), is the target of the cokernel of the induced morphism
Ii−1 → Ki as above.

We affirm that the assignmentM• 7→ Hi(M•)defines an additive functor C∗(A) → A.
Indeed, let ψ• :M• → N• be a morphism of complexes. By the universal property of
kernels and cokernels, we have induced morphisms

KiM• Mi Mi+1 CiM•

KiN• Ni Ni+1 CiN• .

kerdi
M• di

M•

ψi ψi+1

cokerdi
M•

kerdi
N• di

N• cokerdi
N•

In order for the universal property of cokernels to induce a morphism Hi(ψ•) :

Hi(M•) → Hi(N•) making the diagram

Ii−1M•

Hi(M•) KiM• Mi Mi+1

Hi(N•) KiN• Ni Ni+1

Ii−1N•

imdi−1
M•

Hi(ψ•)

kerdi
M• di

M•

ψi ψi+1

kerdi
N• di

N•

imdi−1
N•

commute, we have to show that the morphism Ii−1M• → KiM• → KiN• → Hi(N•) is zero.
Since Ii−1N• → KiN• → Hi(N•) is the zero-morphism, it suffices to construct a morphism
Ii−1M• → Ii−1N• which factors Ii−1M• → KiM• → KiN• . This morphism is induced by the
universal property of kernels using the fact that im = ker(coker):

Ki−1M• Mi−1 Ii−1M• Mi Ci−1M•

Ki−1N• Ni−1 Ii−1N• Ni Ci−1N• .

kerdi−1
M• coimdi−1

M•

ψi−1

imdi−1
M•

ψi

cokerdi−1
M•

kerdi−1
N• coimdi−1

N• imdi−1
N• cokerdi−1

M•

The left-hand side of the diagram commutes due to the universal property of cokernels
and the fact that coim = coker(ker). The uniqueness of the induced morphism on
cohomology implies right-away thatHi preserves the composition of morphisms and
that it is additive.

In A-Mod, the i-th cohomology of a complex is simply given by kerdi/ imdi−1 and,
for a morphism ψ• :M• → N• of complexes, the induced morphism on cohomology
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2.1 Basic definitions

is nothing but
Hi(ψ•) : [m] 7→ [ψi(m)].

As it will become clear in the next sections, the morphisms of complexesψ• :M• →

N• which induce an isomorphism in cohomology are important and deserve a name.

Definition 2.1.4 — Quasi-isomorphism. A morphism of complexes ψ• : M• → N• is
said to be a quasi-isomorphism if, for all i, the induced morphismHi(ψ•) : Hi(M•) →

Hi(N•) is an isomorphism.

We observe that we can also see cohomology as a functor C∗(A) → C∗(A), where
the image of a complex M• is a complex H•(M•) which has Hi(M•) as objects and
zero-morphisms as differentials.

An important property of cohomology is that it commutes with exact functors.

Proposition 2.1.2 Let F : A → B be an exact functor between abelian categories and
M• a complex in A. Then H•(F(M•)) = F(H•(M•)).

Proof. We construct the i-th cohomology group of F(M•). Since F is additive,

· · · F(Mi−1) F(Mi) F(Mi+1) · · ·
F(di−1) F(di)

is indeed a complex. Due to the fact that F preserves finite limits and finite colimits,
F(imdi−1) is the image of F(di−1) and F(kerdi) is the kernel of F(di).

F(Ii−1)

· · · F(Mi−1) F(Mi) F(Mi+1) · · ·

F(Ki)

F(imdi−1)

F(di)

F(kerdi)

Moreover, by the uniqueness in the universal property of images, the induced mor-
phism F(Ii−1) → F(Ki) coincides with the image of the induced morphism Ii−1 → Ki

by F. Then, since F preserves finite colimits, the cokernel of F(Ii−1) → F(Ki) is simply
the image of the cokernel of Ii−1 → Ki by F, proving thatHi(F(M•)) = F(Hi(M•)).

Since direct sums are limits and colimits at the same time, the direct sum functor
preserves finite limits and finite colimits. The proposition 1.5.4 then implies that it
is exact. As additive functors are precisely those that preserve finite direct sums,
the preceding proposition gives another proof that cohomology defines an additive
functor.

Before we move on, we observe that our definition of the cohomology of a complex
is somewhat asymmetrical. Instead of factoring di−1 through kerdi, we could have
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2 Complexes and cohomology

factorized di through cokerdi−1. Then the universal property of coimages induces a
morphism Ci−1 → Ii making the diagram

Ii

· · · Mi−1 Mi Mi+1 · · ·

Ci−1

di−2 di−1

cokerdi−1

coimdi

di+1

commute. Dually to our previous situation, this morphism is always an epimorphism
(for coimdi is) and is monic if and only if the complex is exact atMi. Not surprisingly,
the source of its kernel is nothing but Hi(M•).

Proposition 2.1.3 Let M• be a complex in an abelian category. Then, for every i,
there exists a natural morphism Hi(M•) → Ci−1 making the diagram

Ii−1 Ii

Mi−1 Mi Mi+1

Ki Ci−1

Hi(M•)

imdi−1

cokerdi−1

coimdi

kerdi

commute and satisfying the universal property of the kernel of Ci−1 → Ii.

Proof. Let µ : Ki → Ci−1 be the composition cokerdi−1 ◦ kerdi. By the first iso-
morphism theorem (theorem 1.2.5), the source of imµ and the target of coimµ are
isomorphic. Thus, it suffices to show that Ii−1 → Ki is its kernel and Ci−1 → Ii is its
cokernel.

The composition Ii−1 → Ki → Ci−1 is zero, for it coincides with cokerdi−1 ◦ imdi−1.
Moreover, if ζ : Z → Ki is another morphism whose composition with µ is zero,
then (cokerdi−1) ◦ (kerdi) ◦ ζ = 0 and so the universal property of kernels (using
that imdi−1 = ker(cokerdi−1)) induces a morphism Z → Ii−1 making the diagram
commute. This shows that Ii−1 → Ki is the kernel of µ. That Ci−1 → Ii is its cokernel
follows by duality.

Beyond satisfying our desire for symmetry, the preceding proposition also gives a
very useful exact sequence linking cohomologies of different degrees for free.
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Corollary 2.1.4 Let M• be a complex in an abelian category. Then, for every i, the
sequence

0 Hi(M•) Ci−1 Ki+1 Hi+1(M•) 0,

where the morphism in the middle is the composition Ci−1 → Ii → Ki+1, is exact.

Proof. We already know that the sequence is exact at Hi(M•) and at Hi+1(M•).
Exactness at the other objects means that the kernel ofCi−1 → Ki+1 isHi(M•) → Ci−1

and that its cokernel is Ki+1 → Hi+1(M•).
For the first statement, let Z → Ci−1 be a morphism whose composition with

Ci−1 → Ki+1 is zero. Since the Ci−1 → Ki+1 is the composition of Ci−1 → Ii and
Ii → Ki+1, and the latter is a monomorphism, it follows that Z → Ci−1 → Ii is zero.
But then, sinceHi(M•) → Ci−1 is the kernel of Ci−1 → Ii, there’s a unique morphism
Z→ Hi(M•) making the diagram commute. The other statement follows in the same
way.

2.2 Exact triangles

One of the main ideas that will motivate our study of homological algebra is the
fact that the cohomology functor is not exact, but that somehow we can correct this
defect. Let’s understand in detail what this means. Consider a short exact sequence
of complexes in an abelian category:

0 L• M• N• 0.
ϕ• ψ•

We recall that, since kernels and cokernels on the category of complexes are computed
pointwise, this means that all the components

0 Li Mi Ni 0.
ϕi ψi

are exact. By the functoriality of Hi, we get a complex

0 Hi(L•) Hi(M•) Hi(N•) 0,

which is exact at Hi(M•) but need not be at the extremities. The first statement will
emerge as a particular case of our next theorem, but we can see right away that the
cohomology functor need not be exact. Indeed, let L• = ι(Z)[−1], M• be the complex
whose only non-zero objects areM1 = Z andM0 = Z, and N• be the complex whose
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2 Complexes and cohomology

only non-zero objects are N1 = Z/2Z and N0 = Z. These complexes fit into the
commutative diagram

0 0 Z Z 0

0 Z Z Z/2Z 0,

idZ

idZ

·2

whose rows are exact. Then the complex induced by the functoriality of H0 is

0 0 0 2Z 0,

which is not exact on the right, and the complex induced by H1 is

0 Z 0 0 0,

which is not exact on the left.
Considering the lack of exactness of Hi, the next best thing we can hope for is to be

able to measure how far it is from being exact at each side. Surprisingly, the objects
that measure this lack of exactness are the cohomology objects itself shifted in degree.
What follows is perhaps the most useful result in homological algebra.

Theorem 2.2.1 — Long exact sequence in cohomology. Consider the following exact
sequence of complexes in an abelian category:

0 L• M• N• 0.
ϕ• ψ•

There exist morphisms δi : Hi(N•) → Hi+1(L•) making the diagram

· · · Hi(L•) Hi(M•) Hi(N•)

Hi+1(L•) Hi+1(M•) Hi+1(N•) · · ·

δi

a long exact sequence. The δi are said to be connecting morphisms.

Proof. First of all, we observe that the snake lemma (theorem 1.6.5) implies that the
top row in the diagram

0 Ki+1L• Ki+1M• Ki+1N•

0 Li+1 Mi+1 Ni+1 0

0 Li+2 Mi+2 Ni+2 0

kerdi+1
L•

kerdi+1
M• kerdi+1

N•

ϕi+1

di+1
L•

ψi+1

di+1
M• di+1

N•

ϕi+2 ψi+2
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is exact. Similarly, it implies that the bottom row in the diagram

0 Li−1 Mi−1 Ni−1 0

0 Li Mi Ni 0

Ci−1L• Ci−1M• Ci−1N• 0

ϕi−1

di−1
L•

ψi−1

di−1
M• di−1

N•

ϕi

cokerdi−1
L•

ψi

cokerdi−1
M• cokerdi−1

N•

is exact.
Now, we fit the morphisms Ci−1 → Ki+1 described in the corollary 2.1.4 into a

commutative diagram

Ci−1L• Ci−1M• Ci−1N• 0

0 Ki+1L• Ki+1M• Ki+1N• ,

whose rows are exact. One more application of the snake lemma (theorem 1.6.5)
provides the desired connecting morphisms.

As we argued in the proof of the snake lemma (theorem 1.6.5), even though there
may be many morphisms Hi(N•) → Hi+1(L•) inducing a long exact sequence, there
are distinguished ones which are defined as follows: for a class [n] ∈ Hi(N•), let n̂ be
an element of Mi such that ψi(n̂) = n. Then diM•(n̂) is in the image of ϕi+1 and we
denote its preimage by the same symbol.

n̂ n

diM•(n̂) diM•(n̂)

δi([n])

ψi

di
M•

ϕi+1

Finally, δi is the map which sends [n] to [diM•(n̂)]. Whenever we talk about con-
necting morphisms, it should be understood that these are the morphisms under
consideration.

One important property of the connecting morphisms is that they satisfy a certain
naturality condition, which we describe below.
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Corollary 2.2.2 Consider the following commutative diagram of complexes in an
abelian category

0 L• M• N• 0

0 L ′• M ′• N ′• 0,

whose rows are exact. Then, for every i, the diagram induced by functoriality and
the connecting morphisms

Hi(N•) Hi+1(L•)

Hi(N ′•) Hi+1(L ′•)

δi

δ ′i

commutes.

Proof. Let A be the abelian category in question and consider a category Ã, the arrow

category, whose objects are morphisms in A and whose morphisms between A → B

and A ′ → B ′ are commutative diagrams

A B

A ′ B ′.

Since Ã is nothing but Fun(T,A), where T is a category with two objects and only one
non-trivial morphism between them, the proposition 1.5.2 implies that Ã is abelian.

A complex in Ã is nothing but a morphism of complexes in A. Denoting the
morphism L• → L ′• in C(A) by L̃•, and similarly for the other morphisms, we obtain
a short exact sequence

0 L̃• M̃• Ñ• 0

in C(Ã). Then the previous theorem yields morphisms δ̃i : Hi(Ñ•) → Hi+1(L̃•). Since
kernels and cokernels are computed pointwise in a functor category (due to the proof
of the aforementioned proposition), a morphism δ̃i : Hi(Ñ•) → Hi+1(L̃•) is nothing
but a commuting square as desired.

Due to its somewhat contrived construction, the connecting morphisms doesn’t
seem to arise in the same fashion as the other morphisms, which are induced from
the functoriality of the cohomology functor. This couldn’t be further from the truth.
We would argue that the long exact sequence in cohomology is simply a shadow of
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a, perhaps more fundamental, long sequence of complexes. In an ideal world, we
would have a morphism of complexes N• → L[1]• and the long exact sequence in
cohomology would be nothing but the image of the sequence

· · · L• M• N• L[1]• M[1]• · · ·
ϕ• ψ• ϕ[1]•

under the cohomology functor. This doesn’t work.1 The next best thing would be to
find a complex P•, along with a quasi-isomorphism ρ• : P• → N• making the diagram

Hi(L•) Hi(M•) Hi(P•) Hi(L[1]•)

Hi(L•) Hi(M•) Hi(N•) Hi+1(L•)

Hi(ϕ•) Hi(ι•) Hi(π•)

Hi(ρ•)

Hi(ϕ•) Hi(ψ•) δi

commute. In this way, the long exact sequence in cohomology arises, up to isomor-
phism, as the image of

· · · L• M• P• L[1]• M[1]• · · ·
ϕ• ι• π• ϕ[1]•

under the cohomology functor and connecting morphism δi can be described as
Hi(π•) ◦Hi(ρ•)−1.

All our hopes and dreams will come true. The reader may recall that there is indeed
a natural complex P• which fits in a short exact sequence

0 M• P• L[1]• 0.
ι• π•

It is the direct sum P• =M•⊕L[1]•, with its natural injections and projections. We also
have a natural morphism ρ• : P• → N• defined as the composition of the projection
M• ⊕ L[1]• →M• with the given morphism ψ• :M• → N•.

Ay, there’s the rub! The natural morphism ρ• : P• → N• need not induce an isomor-
phism on cohomology. For example, consider the following short exact sequence of
complexes of abelian groups

0 ι(Z) ι(Z) ι(Z/2Z) 0,
ϕ•

where ι is the embedding of Ab into C(Ab) and ϕ• is the multiplication by 2 map. In
this case, the naive direct sum is simply the complex

· · · 0 ι(Z) ι(Z)
︸︷︷︸

degree 0

0 · · ·
0

1For example, consider the exact sequence of complexes we used to prove that the cohomology
functor is not exact. A morphism of complexes N• → L[1]• inducing the connecting morphism
H0(N•) → H1(L•) would correspond to a morphism of abelian groups Z → Z whose restriction to
2Z is an isomorphism 2Z → Z. Such a morphism does not exist.
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whose 0-th cohomology is Z, instead of Z/2Z. The problem, of course, is that our
definition of P• carries no information about morphisms involved in the original exact
sequence. If, in the place of the zero-morphism ι(Z) → ι(Z) above, it was ϕ0, no such
problem would arise: the 0-th cohomology would be Z/2Z and all the other degrees
would be zero.

The preceding discussion suggests that it may be useful to consider a complex with
the same objects asM• ⊕ L[1]• but whose i-th differential is given by

(
diM• −ϕ[1]i

0 diL[1]•

)
=

(
diM• −ϕi+1

0 −di+1L•

)
.

As we shall see, it is this object that will solve all our problems.

Definition 2.2.1 — Mapping cone. Let ϕ• : L• → M• be a morphism of complexes in
an additive category. The mapping cone ofϕ• is the complex MC(ϕ)• whose objects
are MC(ϕ)i :=Mi ⊕ Li+1 and whose i-th differential isa

(
diM• −ϕi+1

0 −di+1L•

)
.

aThere are different sign conventions in the literature.

Since the composition of morphisms represented by matrices is given by the mul-
tiplication of the respective matrices, we have that di

MC(ϕ)• ◦ d
i−1
MC(ϕ)•

is represented
by

(
diM• −ϕi+1

0 −di+1L•

)(
di−1M• −ϕi

0 −diL•

)
=

(
diM• ◦ di−1M• ϕi+1 ◦ diL• − d

i
M• ◦ϕi

0 di+1L• ◦ diL•

)
= 0,

proving that MC(ϕ)• is indeed a complex. In an abelian category, the mapping cone
inherits a short exact sequence

0 M• MC(ϕ)• L[1]• 0
ι• π•

where the natural injections and projections are still morphisms of complexes, even
with the new differential. Moreover, there’s an induced long sequence of complexes

· · · L• M• MC(ϕ)• L[1]• M[1]• · · · .
ϕ• ι• π• ϕ[1]•

In order to properly deal with such long sequences of complexes, we introduce
some notation. We denote a long sequence of complexes of the form

· · · L• M• N• L[1]• M[1]• · · ·
ϕ• ψ• ϕ[1]•
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2.2 Exact triangles

as a triangle

L•

N• M•,

ϕ•+1

ψ•

where the arrow marked by +1 indicates that the morphism shifts the degree by one,
representing the imposing diagram

Li+1

Ni+1 Mi+1

Li

Ni Mi

Li−1

Ni−1 Mi−1.

di
N•

di−1
N•

di
N• di

M•

di−1
N• di−1

M•

A morphism of triangles consists of morphisms λ•, µ•, and ν•, making the diagram

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•

ϕ•

λ•

ψ•

µ• ν• λ[1]•

ϕ ′• ψ ′•

commute. Moreover, a triangle is said to be exact if it arises from a long exact
sequence.2

In this notation, the plan we outlined before can be encapsulated as the fact that,
given a short exact sequence of complexes

0 L• M• N• 0,
ϕ• ψ•

the cohomology functor H• takes the triangle induced by MC(ϕ)• and outputs an
exact triangle

H•(L•)

H•(MC(ϕ)•) H•(M•),

H•(ϕ•)+1

2Some references define an exact triangle to be what we’ll soon call a distinguished triangle.
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which is isomorphic to the triangle arising from the long exact sequence in cohomol-
ogy

H•(L•)

H•(N•) H•(M•).

H•(ϕ•)+1

H•(ψ•)

We now prove this fact.

Proposition 2.2.3 Consider the following exact sequence of complexes in an abelian
category:

0 L• M• N• 0.
ϕ• ψ•

There exists a quasi-isomorphism ρ• : MC(ϕ)• → N• making the diagram

Hi−1(L[1]•) Hi(M•) Hi(MC(ϕ)•) Hi(L[1]•)

Hi(L•) Hi(M•) Hi(N•) Hi+1(L•)

Hi(ι•) Hi(π•)

Hi(ρ•)

Hi(ϕ•) Hi(ψ•) δi

commute.

Proof. As before, ρ• is simply the composition of the projection MC(ϕ)• →M• with
the given morphism ψ• : M• → N•. This morphism makes the middle square
commute due to the fact that the composition M• → MC(ϕ)• → M• is the identity
(theorem 1.1.9) and so the diagram below

M• MC(ϕ)•

M•

M• N•

ι•

ρ•

ψ•

ψ•

commutes. The commutativity of the square on the right means that the composition
δi◦Hi(ρ•) sends [(m, l)] ∈ Hi(MC(ϕ)•) to [l] ∈ Hi+1(L•). Now,Hi(ρ•) sends [(m, l)] to
[ψi(m)] and δi sends this element to [l ′], where l ′ is some element satisfyingϕi+1(l ′) =
diM•(m). But l itself is one such element, due to the fact that (m, l) ∈ kerdi

MC(ϕ)• .
All that remains is to prove that Hi(ρ•) is an isomorphism for all i. But, upon

extending our diagram one square to the right, this follows directly from the five
lemma (proposition 1.6.2).

Beyond being conceptually useful, the last proposition also provides us with a
criterion of a morphism of complexes to be a quasi-isomorphism.
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2.2 Exact triangles

Corollary 2.2.4 Let ϕ• : L• → M• be a morphism of complexes. Then ϕ• is a
quasi-isomorphism if and only if its mapping cone MC(ϕ)• is an exact complex.

Proof. If MC(ϕ)• is an exact complex, then its cohomology is zero and so the long
exact sequence in cohomology

Hi−1(MC(ϕ)•)
︸ ︷︷ ︸

=0

Hi(L•) Hi(M•) Hi(MC(ϕ)•)
︸ ︷︷ ︸

=0

Hi(ϕ•)

implies thatϕ• is a quasi-isomorphism. Conversely, ifϕ• is a quasi-isomorphism, the
long exact sequence in cohomology

Hi(L•) Hi(M•) Hi(MC(ϕ)•) Hi+1(L•) Hi+1(M•)
Hi(ϕ•) α β Hi+1(ϕ•)

implies that kerα = idHi(M•), that imα = kerβ and that imβ is the zero-morphism.
The first and the last pieces of information mean that bothα andβ are zero-morphisms,
and imα = kerβ implies that β is a monomorphism. But then kerβ is both the
identity on Hi(MC(ϕ)•) and the zero-morphism 0 → Hi(MC(ϕ)•). It follows that
Hi(MC(ϕ)•) = 0.

This corollary allows us to prove that quasi-isomorphisms are preserved by exact
functors.

Corollary 2.2.5 Let F : A → B be an exact functor between abelian categories and
ϕ• : L• →M• be a morphism of complexes in A. Ifϕ• is a quasi-isomorphism, then
so is F(ϕ•).

Proof. Due to the last corollary, it suffices to prove that MC(F(ϕ•)) = F(MC(ϕ•)) is
an exact complex. But the proposition 2.1.2 implies that

H•(F(MC(ϕ•))) = F(H•(MC(ϕ•))
︸ ︷︷ ︸

=0

) = 0,

establishing the result.

One aspect of mapping cone of a morphism ϕ• : L• → M• that we have not yet
addressed is the fact that, even thoughMC(ϕ)• is always a complex, the long sequence
induced

· · · L• M• MC(ϕ)• L[1]• M[1]• · · ·
ϕ• ι• π• ϕ[1]•

need not be. This means that our triangles aren’t elements of C(C(A)). Indeed, the
composition

L• →M• → MC(ϕ)•
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sends l ∈ Li to (ϕi(l), 0) ∈ Mi ⊕ Li+1, which isn’t always zero unless ϕi is the zero
morphism. Moreover, the composition

MC(ϕ)• → L[1]• →M[1]•

sends (m, l) ∈Mi ⊕ Li+1 to ϕi+1(l) ∈Mi+1, which also isn’t always zero unless ϕi+1

is the zero morphism.
Notwithstanding the fact that these compositions are usually not zero, they do

indeed map to the zero-morphism in cohomology. And they do so for a good reason,
which will be the main focus of the next section.

2.3 The homotopic category

The main line of attack in homological algebra to understanding some mathematical
object consists of associating some interesting complex to this object and then taking
its cohomology. For example, given a smooth manifoldM, we associate to it a complex

0 Ω0M Ω1M Ω2M · · · ,
d d d

where ΩiM is the R-vector space of differential i-forms on M and d is the exterior
derivative. The i-th cohomology of this complex HidR(M) is said to be the de Rham

cohomology of M and is an important invariant of a manifold. Of a more algebraic
nature are the modules TorAi (M,N) which are computed in the following way: we
find an exact sequence of A-modules

· · · P3 P2 P1 P0 M 0,

where each Pi is a projective module, we tensor by N and take the −i-th cohomology
of the complex

· · · P3 ⊗A N P2 ⊗A N P1 ⊗A N P0 ⊗A N.

(All the omitted objects are supposed to be zero.) Surprisingly, the final result is
independent of the choice of the projective modules Pi. We could even take the Pi to
be flat modules and the result wouldn’t change.

But we can do better! Instead of taking the cohomology of the associated complexes,
we can consider them "up to quasi-isomorphism". In this way we retain all the
cohomological information while being able to use the tools available for dealing
with complexes. Somewhat more formally, we would like to find a category D(A),
with the same objects as C(A) but where all the quasi-isomorphisms become genuine
isomorphisms.
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2.3 The homotopic category

This category, along with its bounded variants D∗(A) for ∗ = +,−, b, indeed exists3

and it’s called the derived category of A. This category satisfies a universal property
alike that of the localization of modules: it is endowed with an additive functor
C(A) → D(A) such that quasi-isomorphisms in C(A) are mapped to isomorphisms in
D(A) and which is initial with respect to this property.

It is the derived category that is the natural place to study homological algebra.
Nevertheless, there is an intermediate category, the homotopic category, that will not
only simplify the description of the morphisms in the derived category but also furnish
a substitute thereof in important cases. We begin its study now.

Definition 2.3.1 — Homotopy. Let ϕ•, ψ• : L• →M• be two morphisms of complexes
in an additive category. A homotopy betweenϕ• andψ• is a collection of morphisms
hi : Li →Mi−1 such that

ψi −ϕi = di−1M• ◦ hi + hi+1 ◦ diL•

for all i. If there exists a homotopy between ϕ• and ψ•, we say that they are
homotopic, and we denote it by ϕ• ∼ ψ•.

We observe that this is indeed an equivalence relation: reflexivity and symmetry
are immediate, and it suffices to sum the homotopies to prove that it is transitive. We
also emphasize that the hi need not form a morphism of complexes L• →M[−1]•. In
particular, the diagram

· · · Li−1 Li Li+1 · · ·

· · · Mi−1 Mi Mi+1 · · ·

ϕi−1 ψi−1

di−1
L•

ϕi ψi

di
L•

hi

ϕi+1 ψi+1
hi+1

di−1
M• di

M•

need not commute. The next proposition explains how homotopy interacts with the
additive structure of C(A). The reader may remember its first part as saying that
"morphisms homotopic to zero form an ideal".

Proposition 2.3.1 Let ϕ•

1, ϕ
•

2 : L• → M• and ψ•

1, ψ
•

2 : M• → N• be morphisms of
complexes in an additive category. The following holds.

(a) If ϕ•

1 ∼ 0 and ϕ•

2 ∼ 0, then ϕ•

1 +ϕ
•

2 ∼ 0, ϕ
•

1 ◦ α
• ∼ 0 and β• ◦ϕ•

1 ∼ 0whenever
those compositions exist;

(b) if ϕ•

1 ∼ ϕ
•

2 and ψ•

1 ∼ ψ
•

2, then ψ•

1 ◦ϕ
•

1 ∼ ψ
•

2 ◦ϕ
•

2.

Proof. If ϕ•

1 ∼ 0 and ϕ•

2 ∼ 0, then there exists collections of morphisms hi, ki : Li →

3Up to some set-theoretic subtleties, which will be discussed in the next chapter.
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Mi−1 such that

ϕi1 = d
i−1
M• ◦ hi + hi+1 ◦ diL• and ϕi2 = d

i−1
M• ◦ ki + ki+1 ◦ diL• .

Summing these equations, we see that the morphisms hi + ki form a homotopy
between ϕ•

1 +ϕ
•

2 and zero. By composing on the left with α• : P• → L• we get that

ϕi1 ◦ α
i = di−1M• ◦ hi ◦ αi + hi+1 ◦ diL• ◦ α

i

= di−1M• ◦ (hi ◦ αi) + (hi+1 ◦ αi+1) ◦ diP• ,

proving that hi ◦αi is a homotopy betweenϕ•

1 ◦α
• and 0. The same argument proves

that β• ◦ϕ•

1 ∼ 0. This establishes (a).
Now, (b) follows from (a) by noticing that

0 ∼ ψ•

1 ◦ (ϕ
•

1 −ϕ
•

2) = ψ
•

1 ◦ϕ
•

1 −ψ
•

1 ◦ϕ
•

2

0 ∼ (ψ•

1 −ψ
•

2) ◦ϕ
•

1 = ψ
•

1 ◦ϕ
•

1 −ψ
•

2 ◦ϕ
•

1

and subtracting the two equations.

There’s an important definition which encodes the notion of "isomorphism up to
homotopy".

Definition 2.3.2 — Homotopy equivalence. A morphism of complexesϕ• : L• →M• is
said to be a homotopy equivalence if there exists a morphism ψ• :M• → L• such that
ϕ• ◦ψ• ∼ idM• and ψ• ◦ϕ• ∼ idL• . If there exists a homotopy equivalence between
two complexes, they are said to be homotopy equivalent.

Once again, this defines an equivalence relation: reflexivity and symmetry are clear
and transitivity follows from the preceding proposition. We observe that, from this
point of view, the notion of homotopy equivalence is better behaved then that of quasi-
isomorphism as the latter doesn’t define an equivalence relation between complexes.
Indeed, in C(Ab) the morphism of complexes

· · · 0 Z Z 0 · · ·

· · · 0 0 Z/2Z 0 · · ·

·2

is a quasi-isomorphism which does not possess an inverse (as there are no non-trivial
morphisms Z/2Z → Z), proving that quasi-isomorphism is not a symmetric relation.

Even though the above is only one of the multiple reasons why homotopy equiv-
alence is a more tractable notion than that of quasi-isomorphisms, it would all be
for nothing if homotopy weren’t a stepping stone to the derived category. The next
proposition begins to describe how our plan works.
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2.3 The homotopic category

Proposition 2.3.2 Let ϕ•, ψ• : L• → M• be homotopic morphisms of complexes in
an abelian category. Then ϕ• and ψ• induce the same morphism on cohomology.

Proof. We prove that ψ• −ϕ• induces the zero-morphism in cohomology, i.e., that it
sends elements of kerdiL• to elements of imdi−1M• . But this is clear since

ψi(l) −ϕi(l) = di−1M• (h
i(l)) + hi+1(diL•(l))

and the last term vanishes whenever l ∈ kerdiL• .

This is why the long sequence induced by the mapping cone of a morphism "has a
good reason" to become a complex in cohomology: the composition of two consecutive
morphisms is not necessarily zero, but they are homotopic to zero. This proposition, in
the form of the corollary below, also describes why the line of attack described in the
beginning of this section works: often we’ll associate non-isomorphic complexes to a
mathematical object, but they’ll turn out to be homotopy equivalent.

Corollary 2.3.3 Let L• and M• be homotopy equivalent complexes in an abelian
category. Then H•(L•) ∼= H•(M•).

Proof. Due to the preceding proposition, the morphisms which define a homotopy
equivalence between L• andM• induce inverse morphisms in cohomology.

There is another aspect where homotopy equivalences are simpler than quasi-
isomorphisms: while the latter is only4 preserved by an exact functor (corollary
2.2.5), the former is preserved by arbitrary additive functors.

Proposition 2.3.4 Let F : A → B be an additive functor between additive categories,
and let ϕ•, ψ• : L• →M• be homotopic morphisms in C(A). Then F(ϕ•) and F(ψ•)

are homotopic in C(B). Moreover, if L• and M• are homotopy equivalent in C(A),
then F(L•) and F(M•) are homotopy equivalent in C(B).

Proof. The second assertion follows immediately from the first. As for the first,
observe that if h is a homotopy between ϕ• and ψ•, then

F(ψi) − F(ϕi) = F(di−1M• ) ◦ F(h
i) + F(hi+1) ◦ F(diL•)

= di−1F(M•) ◦ F(h
i) + F(hi+1) ◦ diF(L•).

This proves that the morphisms F(hi)define a homotopy between F(ϕ•) and F(ψ•).

4Indeed, if F is not exact, there exists a three-term exact sequence whose image is not exact. But a
three-term complex is exact if and only if it is quasi-isomorphic to zero.
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This validates our strategy: beginning with a mathematical object to which we
associate some interesting complex, we apply some additive functor and then see the
result in the derived category. The proposition 2.3.4 and the corollary 2.3.3 shows that
any other homotopy equivalent complex would yield the same result at the end.

By identifying homotopic morphisms, we obtain the homotopic category.

Definition 2.3.3 — Homotopic category. Let A be an additive category. The homotopic

category K(A) is the category whose objects are complexes in A and whose mor-
phisms are homotopy classes of morphisms of complexes. We define likewise
bounded variants K∗(A), for ∗ = +,−, b, thereof.

The part (b) of proposition 2.3.1 implies that indeed K∗(A) satisfy the axioms of a
category, and the part (a) shows that they are moreover preadditive. Since they have a
zero-object and binary products, they are even additive. They aren’t, through, almost
never abelian even if A is. Indeed, we’ll soon see that if K∗(A) is abelian then every
short exact sequence in A splits.

We observe that if F : A → B is a functor between additive categories, then we have
a natural functor F : K(A) → K(B) by the proposition 2.3.4 and the universal property
of quotients.

The reader may recall that our long-term goal is to understand the derived category,
which is constructed from C(A) by inverting all the quasi-isomorphisms. In defining
the homotopic category, we have determined a functor

C(A) → K(A)

which sends every object to itself and every morphism to its homotopy class. This
functor sends every homotopy equivalence to an isomorphism and, as the proposition
below shows, is a stepping stone to the derived category.

Proposition 2.3.5 Let F : C∗(A) → D be an additive functor such that F(ϕ•) is an
isomorphism whenever ϕ• is a quasi-isomorphism. Then there exists a unique
additive functor K∗(A) → D making the diagram

C∗(A) D

K∗(A)

F

commute.

Proof. We need to show that if ϕ•, ψ• : L• →M• are homotopic morphisms in C∗(A),
then F(ϕ•) = F(ψ•). Since F is additive, we may assume ψ• = 0. Moreover, as − idL•

is a quasi-isomorphism, the corollary 2.2.4 implies that it suffices to prove that ϕ•

factors through MC(− idL•)
•.
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We already possess the natural injection L• → MC(− idL•)
• so we only have to define

a morphism of complexes π• : MC(− idL•)
• →M• making the diagram

L• M•

MC(− idL•)
•

ϕ•

π•

commute. With that in mind, consider a homotopy hi : Li → Mi−1 between ϕ• and
the zero-morphism. We then define our desired morphism πi : Li ⊕ Li+1 → Mi as
(ϕi, hi+1). It is clear that this makes the diagram above commute. It being a morphism
of complexes means that

(
di−1M• ◦ϕi−1 di−1M• ◦ hi

)
=
(
ϕi hi+1

)(di−1L• idLi

0 −diL•

)

=
(
ϕi ◦ di−1L• ϕi − hi+1 ◦ diL•

)

is verified for all i. The first equation holds due to the fact that ϕ• : L• → M• is a
morphism of complexes, and the second holds as the hi define a homotopy between
ϕ• and zero. This completes the proof.

Since the cohomology functors Hi : C∗(A) → A send quasi-isomorphisms to bona
fide isomorphisms, they descend to well-defined functors K∗(A) → A which will still
be denoted byHi. In particular, it makes sense to ask whether a morphism in K∗(A) is
a quasi-isomorphism or not, and we can construct the derived category by inverting
the quasi-isomorphisms in the homotopic category. This will turn out to be simpler than
going straight from C∗(A).

2.4 The triangulated structure

As hinted before, even if A is an abelian category, the homotopic category K∗(A) need
not be. So, in order to be able to do homological algebra, we need some sort of
substitute in K∗(A) for short exact sequences. It turns out that triangles behave even
better in K∗(A) than they do in C∗(A).

The shift functor [n] : C∗(A) → C∗(A) preserves homotopies and so descends to a
functor K∗(A) → K∗(A) denoted by the same symbol. As before, a triangle in K∗(A)

L•

N• M•,

ϕ+1

ψ
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or even

L• M• N• L[1]•,
ϕ ψ

is a shorthand for a long sequence of the form

· · · L• M• N• L[1]• M[1]• · · · ,
ϕ ψ ϕ[1]

where the morphisms involved are now those of K∗(A). Similarly, a morphism of
triangles consists of morphisms λ, µ, and ν in K∗(A), making the diagram

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•

ϕ

λ

ψ

µ ν λ[1]

ϕ ′ ψ
′

commute. As in C∗(A), the triangles arising from mapping cones have a prominent
role.

Definition 2.4.1 — Distinguished triangles. A triangle in K∗(A) is said to be distinguished

if it is isomorphic to some triangle of the form

L•

MC(ϕ)• M•

ϕ+1

for a morphism ϕ• : L• →M• in C∗(A).

As a first sign that triangles work better in K∗(A) than they do in C∗(A), we observe
that the identity morphism always defines a distinguished triangle in K∗(A). This
means that even though the mapping cone of the identity morphism is not zero, it is
homotopy equivalent to zero.

Lemma 2.4.1 LetM• be a complex in an additive category A. Then the triangle

M•

0 M•

idM•+1

is distinguished.

Proof. Consider the collection of morphisms hi :Mi ⊕Mi+1 →Mi−1 ⊕Mi given by
the matrices (

0 0

− idMi 0

)
.
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The composition di−1
MC(idM•)•

◦ hi + hi+1 ◦ di
MC(idM•)• is represented by the matrix

(
di−1M• − idMi

0 −diM•

)(
0 0

− idMi 0

)
+

(
0 0

− idMi+1 0

)(
diM• − idMi+1

0 −di+1M•

)
,

which is nothing but the identity of MC(idM•)i. It follows that the identity morphism
on MC(idM•)• is homotopic to zero, and so the natural morphism 0 → MC(idM•)• is
an isomorphism in K∗(A).

Another useful property of distinguished triangles in K∗(A) is that they remain
distinguished upon rotation. We observe that, while the proof is basically only the
definition of a homotopy equivalence, there are a lot of things that need to be verified,
and we won’t shy away.

Lemma 2.4.2 Let A be an additive category. Consider the following triangles in
K∗(A):

L•

N• M•

ϕ

+1

ρ

ψ

and

M•

L[1]• N•.

ψ

+1

−ϕ[1]•

ρ

Then one of the triangles is distinguished if and only if the other is.

Proof. We first suppose that the triangle on the left is of the form

L•

MC(ϕ)• M•.

ϕ+1

ι

Since the mapping cone of ι• :M• → MC(ϕ)• is naturally endowed with morphisms
MC(ϕ)• → MC(ι)• and MC(ι)• →M[1]•, it suffices to prove the existence of a homo-
topy equivalence L[1]• → MC(ι)• making the diagram

M• MC(ϕ)• L[1]• M[1]•

M• MC(ϕ)• MC(ι)• M[1]•

ι −ϕ[1]•

ι

commute for the triangle on the right to be distinguished. We define a morphism
Li+1 →Mi ⊕ Li+1 ⊕Mi+1 by 


0

idLi+1

−ϕi+1


 .
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Also, a morphism Mi ⊕ Li+1 ⊕Mi+1 → Li+1 is given by projecting onto the middle
coordinate. The composition Li+1 →Mi ⊕ Li+1 ⊕Mi+1 → Li+1 is

(
0 idLi+1 0

)



0

idLi+1

−ϕi+1


 = idLi+1

and the compositionMi ⊕ Li+1 ⊕Mi+1 → Li+1 →Mi ⊕ Li+1 ⊕Mi+1,




0

idLi+1

−ϕi+1


(0 idLi+1 0

)
=



0 0 0

0 idLi+1 0

0 −ϕi+1 0


 ,

is homotopic to the identity via the homotopyhi :Mi⊕Li+1⊕Mi+1 →Mi−1⊕Li⊕Mi

given by



0 0 0

0 0 0

idMi 0 0


 .

Indeed, the morphism di−1
MC(ι)• ◦ h

i + hi+1 ◦ di
MC(ι)• is represented by



di−1M• −ϕi − idMi

0 −diL• 0

0 0 −diM•






0 0 0

0 0 0

idMi 0 0


+




0 0 0

0 0 0

idMi+1 0 0





diM• −ϕi+1 − idMi+1

0 −di+1L• 0

0 0 −di+1M•




=



− idMi 0 0

0 0 0

−diM• 0 0


+




0 0 0

0 0 0

diM• −ϕi+1 − idMi+1


 =



− idMi 0 0

0 0 0

0 −ϕi+1 − idMi+1


 .

This proves that we have our desired homotopy equivalence. The square on the right
commutes (even in C∗(A)) by the very definition of the morphism L[1]• → MC(ι)•. As
for the one in the middle, we observe that the difference between the two morphisms
MC(ϕ)i → MC(ι)i is



idMi 0

0 0

0 ϕi+1


 ,

which is homotopic to zero via the homotopy hi :Mi⊕Li+1 →Mi−1⊕Li⊕Mi given
by




0 0

0 0

− idMi 0


 .
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Indeed, the morphism di−1
MC(ι)• ◦ h

i + hi+1 ◦ di
MC(ϕ)• is represented by



di−1M• −ϕi − idMi

0 −diL• 0

0 0 −diM•






0 0

0 0

− idMi 0


+




0 0

0 0

− idMi+1 0



(
diM• −ϕi+1

0 −di+1L•

)

=



idMi 0

0 0

diM• 0


+




0 0

0 0

−diM• ϕi+1


 =



idMi 0

0 0

0 ϕi+1


 ,

which is equal to the difference calculated above. This completes the proof that the
triangle on the right is distinguished if the left one is. For the converse, we observe that
by applying what we just proved to the triangle on the right, supposed distinguished,
five times, we arrive at the triangle

L[2]•

N[2]• M[2]•,

ϕ[2]

+1

ρ[2]

ψ[2]

which is distinguished if and only if the triangle on the left is.

The next result shows that the mapping cone "almost" defines a functor from the
category of morphisms (as seen in the proof of corollary 2.2.2) in K∗(A) to K∗(A) itself.

Lemma 2.4.3 Consider the following commutative diagram in K∗(A) whose rows are
distinguished triangles:

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•.

ϕ

λ

ψ

µ

ϕ ′ ψ
′

It exists a (not necessarily unique) morphism ν : N• → N ′• making the diagram

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•

ϕ

λ

ψ

µ ν λ[1]

ϕ ′ ψ
′

commute. That is, defining a morphism of triangles.
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Proof. By composing with some isomorphisms, if necessary, we may assume that our
original diagram is of the form

L• M• MC(ϕ)• L[1]•

L ′• M ′• MC(ϕ ′)• L ′[1]•.

ϕ

λ µ

ϕ ′

Since the square on the left commutes in K∗(A), let hi : Li →M ′i−1 be a collection of
morphisms satisfying

µi ◦ϕi −ϕ ′i ◦ λi = di−1M ′• ◦ h
i + hi+1 ◦ diL•

for all i. We then define our desired morphism νi :Mi ⊕ Li+1 →M ′i ⊕ L ′i+1 as
(
µi −hi+1

0 λi+1

)
.

This is indeed a morphism of complexes since νi ◦ di−1
MC(ϕ)•

− di−1
MC(ϕ ′)•

◦ νi−1 is repre-
sented by

(
µi −hi+1

0 λi+1

)(
di−1M• −ϕi

0 −diL•

)
−

(
di−1M• −ϕ ′i

0 −diL•

)(
µi−1 −hi

0 λi

)

=

(
µi ◦ di−1M• −µi ◦ϕi + hi+1 ◦ diL•

0 −λi+1 ◦ diL•

)
−

(
di−1M• ◦ µi−1 −di−1M• ◦ hi −ϕ ′i ◦ λi

0 −diL• ◦ λ
i

)
,

which is nothing but the zero matrix. This morphism makes the square on the middle
commute due to the fact that

(
µi −hi+1

0 λi+1

)(
idMi

0

)
=

(
µi

0

)

is equal to the composition of µi : Mi → M ′i with the natural injection M ′i →

M ′i ⊕ L ′i+1. Similarly, the square on the right commutes as

(
0 idL ′i+1

)(µi −hi+1

0 λi+1

)
=
(
0 λi+1

)

coincides with the composition of the natural projection Mi ⊕ Li+1 → Li+1 with
λi+1 : Li+1 → L ′i+1.

For an example of the lack of uniqueness, let ν : M• ⊕ L[1]• → M• ⊕ L[1]• be the
morphism defined by (

idM• ϕ

0 idL[1]•

)
,
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where ϕ• is any morphism L[1]• → M•. This morphism makes the diagram, whose
rows are distinguished triangles,

L• M• M• ⊕ L[1]• L[1]•

L• M• M• ⊕ L[1]• L[1]•

0

ν

0

commute. This lack of uniqueness was the main motivation behind Grothendieck’s
unpublished 1991 manuscript Les Dérivateurs, which has almost 2000 pages.

Somewhat surprisingly, the lemmata that precedes amounts to essentially all the
information needed to do homological algebra in K∗(A). In our context, this was
first formalized in Jean-Louis Verdier’s 1967 thesis as the notion of triangulated category,
which we now present.

We begin with an additive category K endowed with an additive isomorphism of
categories5 T : K → K modeling the shift functor in K∗(A). As before, a triangle in K is
a diagram of the form

L M N T(L),
ϕ ψ ρ

and a morphism of triangles is simply a commutative diagram

L M N T(L)

L ′ M ′ N ′ T(L ′).

λ µ ν T(λ)

We also specify a set of distinguished triangles that should satisfy the axioms below.6

(TR1) (a) Every triangle that is isomorphic to a distinguished triangle is also distin-
guished.

(b) For every morphism ϕ : L→M in K there is a distinguished triangle

L M N T(L).
ϕ ψ ρ

(c) For every objectM the triangle

M M 0 T(M)
idM

is distinguished.

5In some texts the functor T is only required to be an equivalence of categories, instead of a genuine
isomorphism. The resulting theory is more complicated as it is 2-categorical.

6Actually TR3 and half of TR2 follow from the rest of the axioms. The interested reader can check
[36].
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(TR2) A triangle

L M N T(L)
ϕ ψ ρ

is distinguished if and only if the triangle

M N T(L) T(M)
ψ ρ −T(ϕ)

is distinguished.

(TR3) Given a commutative diagram in K

L M N T(L)

L ′ M ′ N ′ T(L ′),

λ µ

whose rows are distinguished triangles, there’s a morphism ν : N→ N ′ making
the diagram

L M N T(L)

L ′ M ′ N ′ T(L ′)

λ µ ν T(λ)

commute.

(TR4) Suppose we are given these three distinguished triangles:

L M P T(L),
ϕ

M N R T(M),
ψ

L N Q T(L).
ψ◦ϕ

Then there exists a distinguished triangle

P Q R T(P)

making the diagram

L N R T(P)

M Q T(M)

P T(L)

ϕ

ψ◦ϕ

ψ

commute.
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The object we’re left with is a triangulated category.

Definition 2.4.2 — Triangulated category. A triangulated category is an additive category
K, endowed with an additive automorphism T : K → K and a set of distinguished
triangles satisfying the axioms TR1 to TR4 above.

By now, the reader probably wonders what is the axiom TR4 for. We affirm that
it is a sort of palliative solution to the lack of uniqueness in the induced morphism
of axiom TR3. Indeed, for every morphism ϕ : L → M, the axiom TR1(b) gives an
abstract mapping cone P defining a distinguished triangle

L M P T(L).
ϕ

Similarly, this axiom gives an abstract mapping cone R to a morphism ψ : M → N

and an abstract mapping cone Q to the composition ψ ◦ ϕ : L → N. Naturally, we
wonder how Q relates to P and R. The axiom TR4 affirms simply that they fit into a
distinguished triangle

P Q R T(P).

We leave a study of triangulated categories for the next section and end this one by
proving that indeed K∗(A) are triangulated categories. Once again, this isn’t difficult
at all, but there are a myriad of things that need to be verified.

Theorem 2.4.4 Let A be an additive category. Then the homotopic categories K∗(A)

are triangulated.

Proof. After our preliminary work, the only axiom that remains to be proven is the
last one. For that we may suppose P• = MC(ϕ)•, R• = MC(ψ)• andQ• = MC(ψ◦ϕ)•.
We define morphisms αi : Pi → Qi and βi : Qi → Ri as

(
ψi 0

0 idLi+1

)
and

(
idNi 0

0 ϕi+1

)
,

respectively. The αi define a morphism of complexes since αi ◦ di−1P• − di−1Q• ◦ αi−1 is
represented by

(
ψi 0

0 idLi+1

)(
di−1M• −ϕi

0 −diL•

)
−

(
di−1N• −ψi ◦ϕi

0 −diL•

)(
ψi−1 0

0 idLi

)

=

(
ψi ◦ di−1M• −ψi ◦ϕi

0 −diL•

)
−

(
di−1N• ◦ψi−1 −ψi ◦ϕi

0 −diL•

)
=

(
0 0

0 0

)
.
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Similarly, the βi define a morphism of complexes since βi ◦ di−1Q• − di−1R• ◦ βi−1 is
represented by

(
idNi 0

0 ϕi+1

)(
di−1N• −ψi ◦ϕi

0 −diL•

)
−

(
di−1N• −ψi

0 −diM•

)(
idNi−1 0

0 ϕi

)

=

(
di−1N• −ψi ◦ϕi

0 −ϕi+1 ◦ diL•

)
−

(
di−1N• −ψi ◦ϕi

0 −diM• ◦ϕi

)
=

(
0 0

0 0

)
.

We also define a morphism γ• : R• → P[1]• as the composition R• → M[1]• → P[1]•.
We must now verify that

P• Q• R• P[1]•.
α• β• γ•

is a distinguished triangle and that those morphisms fit into the commutative diagram
of the axiom TR4. For clarity, we number the relevant parts of this diagram and rewrite
it here.

L• (1) N• (3) R• (6) P[1]•

M• (2) Q• (5) M[1]•

P• (4) L[1]•

ϕ•

ψ•◦ϕ• γ•

ψ• β•

α•

The triangles (1) and (6) commute by the very definition of the morphisms involved.
The square (2) commutes since

(
idNi

0

)
ψi =

(
ψi 0

0 idLi+1

)(
idMi

0

)
.

The triangle (3) commutes since

(
idNi 0

0 ϕi+1

)(
idNi

0

)
=

(
idNi

0

)
.

The triangle (4) commutes since

(
0 idLi+1

)(ψi 0

0 idLi+1

)
=
(
0 idLi+1

)
.
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Finally, the square (5) commutes since

(
0 idMi+1

)(idNi 0

0 ϕi+1

)
= ϕi+1

(
0 idLi+1

)
.

In order to show that the triangle we defined is distinguished we’ll define morphisms
ρ• : MC(α)• → R• and σ• : R• → MC(α)• determining an isomorphism of triangles

P• Q• R• P[1]•

P• Q• MC(α)• P[1]•.

α• β• γ•

σ•

α•

ρ•

The morphisms ρi : Ni ⊕ Li+1 ⊕Mi+1 ⊕ Li+2 → Ni ⊕Mi+1 and σi : Ni ⊕Mi+1 →

Ni ⊕ Li+1 ⊕Mi+1 ⊕ Li+2 are defined as

(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
and




idNi 0

0 0

0 idMi+1

0 0


 ,

respectively. They define morphisms of complexes since ρi+1 ◦ di
MC(α)• − d

i
R• ◦ ρi is

represented by

(
idNi+1 0 0 0

0 ϕi+2 idMi+2 0

)



diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1L• 0 − idLi+2

0 0 −di+1M• ϕi+2

0 0 0 di+2L•




−

(
diN• −ψi+1

0 −di+1M•

)(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
=

(
diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −ϕi+2 ◦ di+1L• −di+1M• 0

)
−

(
diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1M• ◦ϕi+1 −di+1M• 0

)
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and σi+1 ◦ diR• − diMC(α)• ◦ σ
i is represented by




idNi+1 0

0 0

0 idMi+2

0 0




(
diN• −ψi+1

0 −di+1M•

)
−




diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1L• 0 − idLi+2

0 0 −di+1M• ϕi+2

0 0 0 di+2L•







idNi 0

0 0

0 idMi+1

0 0


 =




diN• −ψi+1

0 0

0 −di+1M•

0 0


−




diN• −ψi+1

0 0

0 −di+1M•

0 0


 .

In both cases the result is the zero matrix. We now affirm that the morphisms ρ• and
σ• define a homotopy equivalence. The composition ρ• ◦ σ• is equal to the identity
morphism on R• as

(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)



idNi 0

0 0

0 idMi+1

0 0


 =

(
idNi 0

0 idMi+1

)
,

and the morphism σ• ◦ ρ• − idMC(α)• , represented by



idNi 0

0 0

0 idMi+1

0 0




(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
−




idNi 0 0 0

0 idLi+1 0 0

0 0 idMi+1 0

0 0 0 idLi+2




=




0 0 0 0

0 − idLi+1 0 0

0 ϕi+1 0 0

0 0 0 − idLi+2


 ,

is homotopic to zero via the homotopy hi : Ni ⊕ Li+1 ⊕Mi+1 ⊕ Li+2 → Ni−1 ⊕ Li ⊕

Mi ⊕ Li+1 given by the matrix



0 0 0 0

0 0 0 0

0 0 0 0

0 idLi+1 0 0


 .
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Indeed, the composition di−1
MC(α)• ◦ h

i + hi+1 ◦ di
MC(α)• is represented by the matrix




di−1N• −ψi ◦ϕi −ψi 0

0 −diL• 0 − idLi+1

0 0 −diM• ϕi+1

0 0 0 di+1L•







0 0 0 0

0 0 0 0

0 0 0 0

0 idLi+1 0 0




+




0 0 0 0

0 0 0 0

0 0 0 0

0 idLi+2 0 0







diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1L• 0 − idLi+2

0 0 −di+1M• ϕi+2

0 0 0 di+2L•


 =




0 0 0 0

0 − idLi+1 0 0

0 ϕi+1 0 0

0 di+1L• 0 0


+




0 0 0 0

0 0 0 0

0 0 0 0

0 −di+1L• 0 − idLi+2


 =




0 0 0 0

0 − idLi+1 0 0

0 ϕi+1 0 0

0 0 0 − idLi+2


 ,

which coincides with the one representing σ• ◦ ρ• − idMC(α)• . It remains only to
show that ρ• defines a morphism of triangles. That is, that the associated diagram
commutes. The composition of the natural injection Q• → MC(α)• with ρ• is given
by

(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)



idNi 0

0 idLi+1

0 0

0 0


 =

(
idNi 0

0 ϕi+1

)
,

which is nothing but βi. Since σ• is the inverse of ρ• in K∗(A), it suffices to show that
the composition of σ• with the natural projection MC(α)• → P[1]• is γ•. This holds
since

(
0 0 idMi+1 0

0 0 0 idLi+2

)



idNi 0

0 0

0 idMi+1

0 0


 =

(
0 idMi+1

0 0

)
,

which is equal to γi. The proof is at long last over.

2.5 Triangulated categories

After proving that the homotopic categories are triangulated in the last section, we
now delve into the world of triangulated categories. The formal results we’ll obtain
will not only be valid and useful for the homotopic categories, but also for the derived
category in the next chapter.

We begin by understanding what are the natural functors between triangulated
categories, preserving their extra structure.
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Definition 2.5.1 — Triangulated functor. Let (K, T) and (K ′, T ′) be triangulated cate-
gories. A triangulated functor from K to K ′ is an additive functor F : K → K ′, together
with a natural isomorphism τ : F ◦ T → T ′ ◦ F, such that for every distinguished
triangle

L M N T(L),
ϕ ψ ρ

in K, the triangle

F(L) F(M) F(N) T ′(F(L))
F(ϕ) F(ψ) τL◦F(ρ)

is distinguished in K ′.

Whenever we say that two triangulated categories are equivalent, it is to be under-
stood that the functor defining the equivalence of categories is triangulated. Also, if
F : A → B is an additive functor between additive categories, then the induced functor
F : K(A) → K(B) is triangulated. Indeed, an additive functor commutes both with
mapping cones and with the shift functor.

Recall that, given a morphism ϕ : L → M in a triangulated category K, the axiom
TR1 gives a distinguished triangle

L M N T(L).
ϕ ψ ρ

As in the homotopy category, we say that N is the cone of ϕ. We’ll soon see that it is
unique up to isomorphism. For now, this will allow us to define the natural notion of
a triangulated (full) subcategory.

Definition 2.5.2 — Triangulated subcategory. Let (K, T) be a triangulated category. A
triangulated subcategory of K is a full additive subcategory C ⊂ K, which is closed
under cones and under the action of T . That is, the cone of a morphism in C is in C

and T(L) ∈ C whenever L ∈ C.

Surely, if C is a triangulated subcategory of (K, T), the restriction of T to C and the
collection of distinguished triangles in K whose objects are in C gives a structure of
triangulated category to C. Moreover, the inclusion functor C → K is triangulated.

As we observed before, the long sequence induced by the mapping cone of a mor-
phism is a complex in the homotopic category (but not in the category of complexes).
This generalizes to triangulated categories. In particular, it follows that the category of
complexes cannot be triangulated (with respect to the usual shift functor and mapping
cones).
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Proposition 2.5.1 Let K be a triangulated category and

L M N T(L)
ϕ ψ ρ

be a distinguished triangle. Then the compositions ψ ◦ ϕ, ρ ◦ ψ and T(ϕ) ◦ ρ are
zero.

Proof. The axiom TR1 says that the cone of the identity morphism idL is zero. So, by
the axiom TR3, we have a dashed arrow making the diagram

L L 0 T(L)

L M N T(L)

idL

idL ϕ T(idL)

ϕ ψ ρ

commute. This proves that ψ ◦ϕ = 0. Now, the axiom TR2 says that the triangles

M N T(L) T(M)
ψ ρ −T(ϕ)

and

N T(L) T(M) T2(N)
ρ −T(ϕ) −T(ψ)

are distinguished. So, by applying what we just proved to these triangles, we obtain
ρ ◦ψ = 0 and T(ϕ) ◦ ρ = 0.

Duality arguments abound in category theory, as we clearly saw in the chapter
about abelian categories. In order to use such arguments in our present context, we
need to know that the opposite of a triangulated category is also triangulated.

Proposition 2.5.2 Let K be a triangulated category and let D : K → Kop be the
contravariant functor sending each object to itself and inverting all the arrows. We
define an additive isomorphism of categories T op : Kop → Kop asD ◦ T−1 ◦D−1 and
we say that a triangle of Kop is distinguished if it is of the form

N M L T op(N),
D(ψ) D(ϕ) D(−T−1(ρ))

where
L M N T(L)

ϕ ψ ρ

is a distinguished triangle in K. Then Kop is a triangulated category.

Considering that the proof of this result amounts only to a formal verification of
the axioms, and that it won’t add new useful ideas or techniques to the arsenal of the
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reader, we won’t write it here. In case the reader wants to see it anyway, a full proof
is available online on [37].

We also remark that the collection of distinguished triangles in Kop is motivated by
the fact that the axiom TR2 says that a triangle

L M N T(L)
ϕ ψ ρ

is distinguished if and only if its "reverse rotation"

T−1(N) L M N
−T−1(ρ) ϕ ψ

is. By inverting the triangle above, we obtain a distinguished triangle in the opposite
category.

In the lingo of triangulated categories, the content of the proposition 2.2.3 is that
the functor H• : K∗(A) → C∗(A) sends distinguished triangles to exact triangles. We
axiomatize this behavior.

Definition 2.5.3 Let K be a triangulated category and A be an abelian category. We
say that an additive functor H : K → A is cohomological is, for every distinguished
triangle

L M N T(L),
ϕ ψ ρ

the sequence

H(L) H(M) H(N)
H(ϕ) H(ψ)

is exact in A.

Since we can use the axiom TR2 to rotate our distinguished triangles, we obtain a
(infinite) sequence of distinguished triangles

L M N T(L)

M N T(L) T(M)

N T(L) T(M) T(N)

T(L) T(M) T(N) T2(L).

ϕ ψ ρ

ψ ρ −T(ϕ)

ρ −T(ϕ) −T(ψ)

−T(ϕ) −T(ψ) −T(ρ)

Moreover, we can make sure that in each triangle the first two morphisms don’t
have a minus sign. For example, the commutative diagram

N T(L) T(M) T(N)

N T(L) T(M) T(N)

ρ

idN

−T(ϕ)

idT(L)

−T(ψ)

− idT(M) T(idN)

ρ T(ϕ) T(ψ)
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shows that the third triangle is isomorphic to a triangle with the same objects but
whose first two morphisms "don’t have a minus sign". By applying a cohomological
functorH, we obtain a long exact sequence associated with our original distinguished
triangle

· · · H(L) H(M) H(N)

H(T(L)) H(T(M)) H(T(N)) · · · .

H(ϕ) H(ψ)

H(ρ)

H(T(ϕ)) H(T(ψ))

As we just hinted, the functor Hi : K∗(A) → A, for all i, is cohomological. But it
isn’t by all means the only one. The proposition below gives two other cohomolog-
ical functors which will allow the use of the Yoneda lemma to study triangulated
categories.

Proposition 2.5.3 Let K be a triangulated category. Then, the functors

HomK(P,−) : K → Ab and HomK(−, P) : Kop → Ab,

for every object P of K, are cohomological.

Proof. We’ll only prove the covariant statement, for HomK(−, P) = HomKop(P,−) im-
plies the other. Consider the following distinguished triangle in K:

L M N T(L).
ϕ ψ ρ

In order to show that HomK(P,−) is cohomological, we need to prove that the induced
sequence

HomK(P, L) HomK(P,M) HomK(P,N)

is exact. Sinceψ ◦ϕ = 0, due to the proposition 2.5.1, it suffices to show that for every
α : P →M such thatψ ◦α = 0, there exists a morphism β : P → L such that α = ϕ ◦β.

Now, consider the diagram below:

P 0 T(P) T(P)

M N T(L) T(M).

α

− idT(P)

T(α)

ψ ρ −T(ϕ)

Its lower row is a distinguished triangle, since it is nothing but our original triangle
rotated with help of the axiom TR2. The upper row is also a distinguished triangle by
the axioms TR1 and TR2. The axiom TR3 gives a morphism T(P) → T(L) making it
commute which, since T is fully-faithful, is of the form T(β) for exactly one β : P → L.
Since the square on the right commutes, T(α) = T(ϕ) ◦ T(β) = T(ϕ ◦ β). This implies
that α = ϕ ◦ β and finishes the proof.
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We now prove a couple of interesting corollaries. The one below is a form of the
five lemma for triangulated categories.

Corollary 2.5.4 Consider the following morphism of distinguished triangles in a
triangulated category K:

L M N T(L)

L ′ M ′ N ′ T(L ′).

λ µ ν T(λ)

If two of the vertical morphisms λ, µ and ν are isomorphism, then so is the third.

Proof. Without loss of generality, we may suppose that λ and µ are isomorphisms.
Let P be an object of K and H := HomK(P,−). By applying H, we get a commutative
diagram of abelian groups

H(L) H(M) H(N) H(T(L)) H(T(M))

H(L ′) H(M ′) H(N ′) H(T(L ′)) H(T(M ′))

H(λ) H(µ) H(ν) H(T(λ)) H(T(µ))

which, due to the proposition above and its preceding discussion, has exact rows.
The five lemma (proposition 1.6.2) then implies that F(ν) is an isomorphism of abelian
groups and, in particular, of sets. Since this holds for every P, the Yoneda lemma
implies that ν is an isomorphism.

If the reader prefers to avoid the Yoneda lemma, we can arrive at the same conclusion
in a direct way. Since

H(ν) : HomK(P,N) → HomK(P,N
′)

α 7→ ν ◦ α

is an isomorphism for all P, we can take P = N ′ and conclude that there is some
α : N ′ → N such that ν ◦ α = idN ′ . That is, ν has a right inverse. The same argument
with the contravariant hom functor gives a left inverse to ν, proving that it is an
isomorphism.

One corollary of the result above is that the cone of a morphism is unique up to
isomorphism.

Corollary 2.5.5 Let K be a triangulated category and ϕ : L → M be a morphism in
K. Then the cone N of ϕ is unique up to isomorphism.
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2.5 Triangulated categories

Proof. Suppose that N ′ is another cone of ϕ. The axiom TR3 gives a morphism
ν : N→ N ′ making the diagram

L M N T(L)

L M N ′ T(L)

ϕ

idL

ψ

idM

ρ

ν T(idL)

ϕ

commute. The preceding corollary then implies that ν is an isomorphism.

We observe that the non-uniqueness in the induced morphism of the axiom TR3
implies that the isomorphism ν above is not necessarily unique. In particular, the
cone ofϕ is not functorial inϕ. As discussed right after the definition 2.4.2, this is the
raison d’être of the axiom TR4.

Corollary 2.5.6 Let K be a triangulated category and

L M N T(L)
ϕ ψ ρ

be a distinguished triangle. Thenϕ is an isomorphism if and only ifN is isomorphic
to the zero object.

Proof. Suppose that ϕ is an isomorphism, and let ϕ−1 :M → L be its inverse. Since
two of the vertical morphisms in the diagram

L M N T(L)

L L 0 T(L)

ϕ

idL

ψ

ϕ−1

ρ

T(idL)

idL

are isomorphisms, so isN→ 0. Conversely, suppose thatN is isomorphic to zero. By
rotating backwards our distinguished triangle, we obtain the diagram below

T−1(N) L M N

0 L L 0,

−T−1(ρ) ϕ

idL

ψ

idL

whose rows are distinguished triangles. The dashed morphism, induced by the axiom
TR3, is an isomorphism by the proposition above. The commutativity of the diagram
then implies that so is ϕ.

We’re now in position to explain why the homotopic category (and the derived
category) are usually not abelian. The reader may remember the next result as saying
that "in a triangulated category, monomorphisms and epimorphisms split".
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Proposition 2.5.7 Let K be a triangulated category. Ifϕ : L→M is a monomorphism,
then there exists ρ : M → L such that ρ ◦ ϕ = idL. Dually, if ψ : M → N is an
epimorphism, then there exists σ : N→M such that ψ ◦ σ = idN.

Proof. Suppose that ϕ : L→M is a monomorphism. By the axioms TR1(b) and TR2,
there exists a distinguished triangle of the form

T−1(N) L M N.
ϕ

Due to the proposition 2.5.1, the composition T−1(N) → L → M is zero. But, since
ϕ is a monomorphism, it follows that T−1(N) → L is also zero. As HomK(−, L) is
cohomological, we get an exact sequence

HomK(M,L) HomK(L, L) HomK(T
−1(N), L),

0

which implies that HomK(M,L) → HomK(L, L) is surjective. In particular, there exists
ρ :M→ L such that ρ ◦ϕ = idL. The other statement follows by duality.

The proposition above says, in particular, that if K(A) is abelian, then every exact
sequence splits, due to the splitting lemma (theorem 1.4.1). In fact, this also implies
that every exact sequence in A splits.

Corollary 2.5.8 Let A be an abelian category and suppose that K(A) is abelian. Then
every exact sequence in A splits.

Proof. Let ϕ : A→ B be a monomorphism in A and see this morphism in K(A). Since
we suppose that the homotopy category is abelian, we can factor ϕ as imϕ ◦ coimϕ

in K(A). As imϕ is a monomorphism and coimϕ is an epimorphism, the preceding
proposition gives morphisms ρ and σ such that ρ ◦ imϕ = id and (coimϕ) ◦ σ = id.

Let α = σ ◦ ρ : B → A. Observe that α is in A, since A embeds fully faithfully in
K(A), and that

ϕ ◦ α ◦ϕ = (imϕ ◦ coimϕ) ◦ (σ ◦ ρ) ◦ (imϕ ◦ coimϕ)

= imϕ ◦ (coimϕ ◦ σ)
︸ ︷︷ ︸

id

◦ (ρ ◦ imϕ)
︸ ︷︷ ︸

id

◦ coimϕ

= imϕ ◦ coimϕ = ϕ.

But ϕ is a monomorphism in A and so α ◦ ϕ = idA. The result then follows by the
splitting lemma.

This result was proved only for the homotopy category, since we are yet to see the
formal definition of the derived category. But the reader will realize in due time that
the same argument also proves that if D(A) is abelian, then every exact sequence in A

splits.7

7An abelian category where every exact sequence splits is said to be semisimple.
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3 The derived category

As hinted in the previous chapter, our goal is to eventually study the derived category
D(A), which will be constructed from the homotopy category K(A) by inverting all
the quasi-isomorphisms. Unlike homotopy equivalences, quasi-isomorphisms does
not define an equivalence relation, precluding us from defining D(A) by quotienting
the hom-sets as we did in the homotopy category. We shall need more powerful
machinery; the localization of categories.

3.1 Localization of categories

The main idea of this section is very simple: given a category C and a collection of
morphisms S in C, we will define a category S−1C, along with a functorQ : C → S−1C

sending all elements of S to isomorphisms in S−1C, and such thatQ is universal with
this property. In other words, we’ll establish the following theorem.

Theorem 3.1.1 Let C be a category and S a collection of morphisms in C. Then
there exists a category S−1C and a functor Q : C → S−1C satisfying the following
properties:

(a) for every s ∈ S, Q(s) is an isomorphism in S−1C;

(b) if F : C → D is a functor such that F(s) is an isomorphism for every s ∈ S, there
exists a unique functor S−1C → D making the diagram

C D

S−1C

F

Q

commute.

Moreover, S−1C is unique up to a unique isomorphism.

We say that S−1C is the localization of C with respect to S. Before going on to the
proof of this result, it is useful to understand how the explicit construction of S−1C
works. Let’s begin by posing that S−1C should have the same objects as C. As for the
morphisms, ifM andN are objects of C, we define a path fromM toN to be a diagram
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3 The derived category

of the form

M L1 L2 · · · Ln N,
f0 s1 s2 fn−1 sn

where L1, . . . , Ln are objects of C, the arrows fi to the right are morphisms of C, and
the arrows si to the left are elements of S. We denote such a path symbolically as
s−1n ◦ fn−1 ◦ · · · ◦ s−12 ◦ s−11 ◦ f0. Now, in order for this representation to function as
it should, we define an equivalence relation on paths by imposing that compositions
behave well

Li−1 Li Li+1
fi−1 fi is equivalent to Li−1 Li+1,

fi◦fi−1

that we may ignore identities

Li−1 Li Li Li+1
fi−1 idLi fi is equivalent to Li−1 Li Li+1,

fi−1 fi

and that arrows to the left correspond to inverses

M N M

N M N

s s

s s

are equivalent to
M M

N N.

idM

idN

We then define a morphismM→ N in the localization S−1C to be an equivalence class
of paths from M to N. Composition of morphisms is given simply by concatenation.
Moreover, the identity morphism idM in S−1C of an objectM is the equivalence class
of the path

M M.
idM

Finally, the functor Q : C → S−1C is given by the identity on objects and sends a
morphism f :M→ N to the equivalence class of the path

M N.
f

We now verify all the formal details for the proof of our theorem.

Proof of theorem 3.1.1. First and foremost, we remark that we have indeed defined
an equivalence relation on paths and that S−1C is indeed a category. Also, the image
Q(s) of any morphism s : M → N in S is indeed an isomorphism in S−1C, whose
inverse is represented by

N M.
s

As for the universal property, let F : C → D be a functor such that F(s) is an isomor-
phism for every s ∈ S. We define a functor G : S−1C → D which is equal to F on
objects and sends the equivalence class of a path

M L1 L2 · · · Ln N
f0 s1 s2 fn−1 sn
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to the composition

F(M) F(L1) F(L2) · · · F(Ln) F(N).
F(f0) F(s1)

−1 F(s2)
−1 F(fn−1) F(sn)

−1

Since functors preserve composition and identities, this is independent of the choice
of representative. This functor indeed satisfies F = G ◦ Q and, by construction, is
uniquely determined by F. The uniqueness of the localization follows as usual from
universal properties.

As a quick corollary, we observe that localization behaves well with relation to the
opposite category.

Corollary 3.1.2 Let C be a category and S a collection of morphisms in C. The
category (S−1C)op is isomorphic to the localization of Cop with respect to Sop.

Proof. Consider the functorQop : Cop → (S−1C)op. It is clear thatQop sends elements
of Sop to isomorphisms. Now, if F : Cop → D is a functor sending elements of Sop to
isomorphisms, its opposite Fop : C → Dop sends elements of S to isomorphisms and
so factors through the localization S−1C:

C Dop

S−1C.

Fop

Q

The image of the diagram above by the opposite category functor gives the existence
of a unique functor (S−1C)op → D making the diagram

Cop D

(S−1C)op

F

Qop

commute. The uniqueness of the localization then yields the desired result.

The homotopy category K(A) is already the localization of C(A) with respect to the
collection of homotopy equivalences. In addition, we’ll define the derived category
D(A) as the localization of C(A) (or, as we’ve seen, K(A)) with respect to the collection
of quasi-isomorphisms. Before going any further, let’s check another interesting
example.

� Example 3.1.1 — Lie’s third theorem. Let LieGrp be the category of connected Lie groups
and LieAlg be the category of finite-dimensional Lie algebras. The tangent space at the

identity functor
LieGrp → LieAlg
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3 The derived category

is faithful and essentially surjective, but it isn’t an equivalence of categories. Indeed,
if ϕ : G → G ′ is a covering map, its differential at the identity deϕ : g ′ → g is an
isomorphism.

There are two ways of turning this functor into an equivalence of categories. Perhaps
the simplest way is to restrict its domain to the full subcategory of simply connected

Lie groups. But another way is to simply localize LieGrp with respect to all covering
maps.1 Then the universal property of localization gives an equivalence of categories
between this localization and LieAlg. �

A huge collection of examples are of the following form.

� Example 3.1.2 — Reflective localization. Let D be a full subcategory of C. We say
that D is a reflective subcategory if the inclusion functor i : D → C admits a left adjoint
r : C → D. Let S be the collection of morphisms in C which are sent to an isomorphism
by r. Then D is equivalent to the localization S−1C. (Proposition 5.3.1 in [3].)

A plethora of examples of localization are of this form. The functor Grp → Ab

sending a group to its abelianization identifies Ab as a localization of Grp. Similarly,
the fraction field functor IntDom → Fld, from the category of integral domains and
injective morphisms to the category of fields, identifies Fld as a localization of IntDom.
The reader which already has some knowledge of algebraic geometry may appreciate
that both the sheafification functor and the functor

Sch → Aff

X 7→ Spec Γ(X,OX),

from the category of schemes to the category of affine schemes, are examples of
reflective localization. �

There are two issues with our notion of localization that ought to be addressed.
Firstly, the localization of a locally small category need not be locally small.2 This may
be a problem for applying the Yoneda lemma, for example. Fortunately, almost all the
localizations we are interested in will be locally small. (We’ll soon see that the derived
category of a locally small Grothendieck abelian category is locally small.)

Another problem with our notion of localization is that, if C is additive, it isn’t clear
if S−1C is also additive or not. Indeed, how can we sum paths? We can solve this
problem by forcing every path fromM to N to be equivalent to a path of the form

L

M N,

f s

1The reader may wonder if the composition of covering maps is still a covering map. Somewhat
surprisingly, this is false in general, but it holds for manifolds due to the theorem 2.11 in [28].

2Or, using the formalism of Grothendieck universes, the localization of a category need not exist in
our fixed universe.
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3.1 Localization of categories

which we call a roof. We’ll then conclude that any two roofs can be written with the
same morphism s on the right, allowing their sum.

Definition 3.1.1 — Multiplicative system. Let C be a category and S be a collection of
morphisms in C. We say that S is a left multiplicative system if it satisfies:

(LMS1) S is stable under composition and contains all the identities of C.

(LMS2) For any pair of morphisms f : L→ N in C and s : L→M in S, there exists
g :M→ L ′ in C and t : N→ L ′ in Smaking the diagram

L ′

M L N

g

s f

t

commute.

(LMS3) For every pair of morphisms f, g : L → L ′ in C and s : M → L in S such
that f ◦ s = g ◦ s, there exists t : L ′ → N in S such that t ◦ f = t ◦ g.

The conditions for a right multiplicative system are the same with all the arrows
reversed. We say that S is a multiplicative system if it’s both a right and a left
multiplicative system.

While the axiom LMS3 may seem somewhat technical, the other two axioms are
precisely what we need in order for every morphism in S−1C to be represented by a
roof. Indeed, if S is a left multiplicative system, the axiom LMS2 allows us to gather
all the inverse arrows on the right side of the path and the axiom LMS1 says that all
these inverse arrows become one single element of S.

Even better, we can detect equivalence of paths without ever leaving the realm of
roofs. Formally, there exists an equivalence relation ∼L on roofs which induces a
dashed isomorphism making the diagram

{roofs fromM to N} {paths fromM to N}

{roofs fromM to N}/ ∼L HomS−1C(M,N)
∼

commute. We say that two roofs

L1

M N

f1 s1 and
L2

M N

f2 s2
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3 The derived category

are∼L equivalent if there exists an objectL in C and morphismsp1 : L1 → L,p2 : L2 → L

making the diagram

L

L1 L2

M N

p1 p2

f1 f2 s1 s2

commute and such that p2 ◦ s2 = p1 ◦ s1 is in S. We observe that, if S is a right
multiplicative system, every morphism in S−1C can be represented by a trough

M N

L

s f

and we have a similar relation ∼R for such diagrams. The next proposition proves all
these claims. Since a right multiplicative system on C is nothing but a left multiplica-
tive system on Cop, we’ll henceforth only cite and prove results for left multiplicative
systems, for analogous results hold by duality.

Proposition 3.1.3 Let S be a left multiplicative system in a category C, and let M,N
be two objects of C. Then ∼L is an equivalence relation on the collection of roofs
fromM to N. Moreover, the canonical morphism sending a roof to a morphism in
S−1C descends to the quotient defining an isomorphism

HomS−1C(M,N) ∼= {roofs fromM to N}/ ∼L .

Proof.

In precisely the same way that we sum fractions by writing them with a common
denominator, we can write any two roofs with a single morphism s on the right.

Proposition 3.1.4 Let S be a left multiplicative system in a category C. Every two
morphisms M → N in S−1C may be written as the equivalence classes of s−1 ◦ f
and s−1 ◦ g for suitable morphisms f, g in C and s ∈ S.

Proof.

Besides allowing the sum of two morphisms in a localization of a preadditive
category, the above writing also allows us to easily decide whether two morphisms in
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the localization are equal. We claim that two morphisms in S−1C represented by the
roofs

L

M N

f1 s and
L

M N

f2 s

are equal if and only if there exists a morphism q : L→ L in C such that q ◦ s ∈ S and
q ◦ f1 = q ◦ f2. Indeed, both roofs are equivalent if and only if there exist morphisms
p1 : L→ L ′ and p2 : L→ L ′ making the diagram

L ′

L L

M N

p1 p2

f1 f2 s s

commute and such that p2 ◦ s = p1 ◦ s is in S. If there exists such a morphism q, we
may take p1 = p2 = q. Conversely, the axiom LMS3 gives a morphism t ∈ S such that
t ◦ p2 = t ◦ p1 and we may take q to be this common morphism.

Corollary 3.1.5 Let S be a left multiplicative system in a preadditive category A. Then
S−1A is also preadditive, and the localization functor Q : A → S−1A is additive.
Moreover, if B is another preadditive category and F : A → B is an additive functor
such that F(s) is an isomorphism for every s ∈ S, the induced morphism S−1A → B

is also additive. If A is additive, then so is S−1A.

Proof.

We’re finally able to explain the raison d’être of the nomenclature and notation used
in this section.

� Example 3.1.3 — Localization of noncommutative rings. LetA be a (not necessarily com-
mutative) ring. We define a category A which only has one object ∗ and such that
HomA(∗, ∗) = A. This is a preadditive category and, in this context, a left multiplicative
system S on A is a subset of A such that

(a) S is multiplicatively closed and contains 1;

(b) for every a ∈ A and s ∈ S, the set As ∩ Sa is nonempty;

(c) for every a ∈ A and s ∈ S, if as = 0, then ta = 0 for some t ∈ S.

A particular case of the preceding corollary proves the existence of localizations for left
multiplicative systems on any ring. This is a very important result on noncommutative
ring theory. �
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3 The derived category

For our next result, let C be a category and S be a left multiplicative system on C.
Given an objectN in C, we define a categoryN/Swhose objects are morphismsN→ L

in S and whose morphisms are commutative diagrams

N

L1 L2,

where the arrow L1 → L2 is in C.

Corollary 3.1.6 Let S be a left multiplicative system in a category C. Then we may
write HomS−1C(M,N) as the filtered colimit

colim
(N→L)∈N/S

HomC(M,L).

In particular, the localization functorQ : C → S−1C commutes with finite colimits.
Similarly, if S is a right multiplicative system, Q commutes with finite limits.

Proof.

As with (pre)additive categories, a localization of an abelian category with respect
to a multiplicative system is still abelian and satisfies a stronger universal property.

Proposition 3.1.7 Let S be a multiplicative system in an abelian category A. Then
S−1A is also abelian, and the localization functor Q : A → S−1A is exact. Moreover,
if B is another abelian category and F : A → B is an exact functor such that F(s) is
an isomorphism for every s ∈ S, the induced morphism S−1A → B is also exact.

Proof.

There’s another point of view which is often used when dealing with localizations
of abelian categories. For that we need the definition below.

Definition 3.1.2 — Thick subcategory. Let A be an abelian category. We say that a
non-empty full subcategory B of A is thick if for any short exact sequence

0 A B C 0

in A, B is in B if and only if A and C are.

Due to the corollary 1.2.2, a thick subcategory is always abelian. The raison d’être of
such subcategories is the result below.
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Proposition 3.1.8 Let A be an abelian category. Given a multiplicative system S in A,
the full subcategory BS, composed of the objects which are isomorphic to 0 in S−1A,
is thick. Conversely, given a thick subcategory B, the collection SB of all morphisms
ϕ in A such that kerϕ and cokerϕ are in B is a multiplicative system.

Proof.

Motivated by the proposition above, we define the quotient A/B of an abelian cate-
gory A by a thick subcategory B as the localization S−1B A. These quotients are often
called Serre quotients in the literature.

Given an exact functor F : A → B between abelian categories, its kernel is the full
subcategory of A composed of the objects whose image by F is zero. It’s clear that
the kernel of an exact functor is thick. As in basically every algebraic category, the
existence of quotients gives the converse. In this case, the last two propositions imply
that every thick subcategory B of A is the kernel of some exact functor. Namely, the
quotient / localization functor Q : A → A/B.

In due time, we’ll see that many interesting abelian categories are Serre quotients
of A-Mod, for some (not necessarily commutative) ring A. (Theorem ??.) We present
two other examples of Serre quotients.

� Example 3.1.4 Let S be a multiplicative subset of a ring A and B be the category of
A-modules whose elements are annihilated by some element of S. It’s clear that B is
a thick subcategory of A-Mod. We affirm that S−1A-Mod is canonically equivalent to
A-Mod/B.

Let f : A → S−1A (resp. Q : A-Mod → A-Mod/B) be the localization map (resp.
functor). The functor f∗ : A-Mod → S−1A-Mod, which sendsM toM⊗AS

−1A ∼= S−1M,
is exact and maps elements of B to zero. The universal property then implies that it
descends to an exact functor f̃∗ : A-Mod/B → S−1A-Mod.

Denoting by f∗ : S−1A-Mod → A-Mod the restriction of scalars functor, the adjunc-
tion f∗ ⊣ f∗ gives rise to another adjunction f̃∗ ⊣ Q ◦ f∗. The unit of the latter is a
natural isomorphism, which proves that f̃∗ is fully faithful. Finally, it’s also essen-
tially surjective since the restriction of scalars of a S−1A-module N to A is sent to an
isomorphic copy of N. This finishes the proof.

In particular, the quotient of Ab by the thick subcategory of torsion groups is
equivalent to Q-Vect. �

The reader that already knows some algebraic geometry may be pleased to know
that the basic theory of quasicoherent sheaves on projective schemes may be phrased
using Serre quotients.

� Example 3.1.5 Let A be a N-graded ring, which is finitely generated by A1 as an A0-
algebra, and X = ProjA. We denote by A-GrMod the category of graded A-modules
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M such that
⊕
d>nMd is finite for some n. The usual tilde functor

r : A-GrMod → QCoh(X)

M 7→ M̃

is exact and its kernel, denoted byA-GrMod0, is composed by the modulesM satisfying
Md = 0 for all d large enough. [22, Proposition 2.7.3] The tilde functor r admits a
right adjoint Γ•, defined by

Γ•(F ) :=
⊕

n∈Z

Γ(X,F (n)),

which is fully faithful due to the fact that the counit

Γ̃•(F ) → F

is a natural isomorphism. Then, the formalism of example 3.1.2 implies that r factors
through the quotient and that

A-GrMod/A-GrMod0 → QCoh(X)

is an equivalence of categories. �
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