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Introduction

Gabriel-from-the-future here. I originally wrote these notes for myself when I was
first learning homological algebra. They don't go very far, but I still haven't quite
found an introductory treatment that follows the same guiding principles.

In particular, I discussed abelian categories on their own terms, without pretending
that they are categories of modules over a ring. I took derived categories as the
starting point, rather than presenting them only after the classical approach. And I
have included detailed proofs throughout.

The notes stop a bit before derived functors, but I still think there are a few ideas here
that may be useful. Back in the day, some friends seemed to appreciate these notes,
so I'm making them publicly available in the hope that they might help someone else
to learn this beautiful subject.
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1 Abelian categories

Homological algebra deals extensively with the notions of kernel, image, exact se-
quences, chain complexes, and the like. This chapter will explain the most general
setting, that of abelian categories, in which these concepts make sense. Certainly, the
category of A-modules has all the needed characteristics. Going even further, it is true
that every abelian category has a fully faithful embedding on A-Mod for some (not
necessarily commutative) ring A. However, when itis not too troublesome, we’ll study
abelian categories "on their own" for we believe that understanding arrow-theoretic
arguments and not becoming dependent on a difficult theorem can only be beneficial.

1.1 Additive categories

We begin our quest of understanding which properties a category should have in
order for exact sequences to make sense. A first problem is that our category should
have a distinguished object corresponding to the trivial module in A-Mod. In order to
allow for exact sequences, this object should be initial and final at the same time. We
arrive at our first definition.

Definition 1.1.1 Let Abe a category. A zero-object is an object of A which is both initial
I and final. We’ll always denote zero-objects as 0.

The reader should notice that even reasonable categories may fail to have initial
or final objects (the category of fields, for example, has neither). And even if they
exist, they may not coincide (as in Set or Ring). Nevertheless, Grp, Ab, and A-Mod are
examples of categories possessing zero-objects.

The existence of zero-objects in a category allows us to talk about zero-morphisms.

Definition 1.1.2 Let A be a category with a zero-object 0. A morphism ¢ : M — N
is called a zero-morphism if it factors through the zero-object 0. We’ll also denote
zero-morphisms by 0.

We observe that in a category with a zero-object, there is exactly one zero-morphism
from each object M to each object N: it’s just the composite of the unique morphism
M — 0 with the unique morphism 0 — N. In any of the aforementioned categories
which possess zero-objects, the zero morphism M — N is the one sending every ele-
ment of M to 0 € N. Moreover, the composition of a zero-morphism with an arbitrary
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morphism is again a zero-morphism. Indeed, the composition factors through 0.

In an abstract category, we have no means of defining kernels set-theoretically as
the subobjects composed of the elements which are sent to zero. Instead, we define a
kernel as a morphism by a suitable universal property.

Definition 1.1.3 — Kernel. Let ¢ : M — N be a morphism in a category A with a
zero-object 0. The kernel of ¢ is the equalizer of ¢ and the zero-morphism. In
other words, it is a morphism t : K = M such that, whenever ¢ : Z — M satisfies
¢ o ¢ =0, there exists a unique morphism Z — K making the diagram

Ly M /=N

K
N 0
| /

z

commute. We denote both K and t: K — M by ker ¢.

Once again, we observe that kernels are not guaranteed to exist even in reasonable
categories. For example, kernels may fail to exist in the category of finitely generated
A-modules whenever A is not noetherian.

In any of the previously mentioned categories with zero-objects, the universal prop-
erty of the kernel is satisfied by the inclusion map from the set-theoretic kernel. This
generalizes nicely to the categorical kernel. For that, we need another piece of nomen-
clature.

Definition 1.1.4 — Subobject. Let M be an object in a category A. We say that two

monomorphisms s : S - M and t : T — M are equivalent if there exists an

isomorphism S — T making the diagram

S—— T
NA
M
commute. In other words, s and t are equivalent if they are isomorphic in the

slice category A | M. A subobject of M is an equivalence class for this equivalence
relation.

The universal property of kernels implies that all kernels of a morphism M — N
belong to the same isomorphism class in A | M. Thus, in order to prove that the
kernel of M — N is a subobject of M it suffices to show that kernels are monic.

Proposition 1.1.1 Let ¢ : M — N be a morphism in a category A with a zero-object 0
and suppose that ker ¢ : K — M is its kernel. Then ker ¢ is a monomorphism and
so defines a subobject of M.
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The reader should notice that the same proof shows that every equalizer is monic.

Proof. Let o, 3 : Z — K be two morphisms such that (ker ¢) o x = (ker ¢) o 3 and
let ¢ be their common compositions. By the universal property of kernels, there is a
unique morphism Z — K making the diagram

Lo, M —3 N

T P
commute. But & and 3 are two such morphisms. It follows that o = (3. O

In most categories in algebra, kernels measure how far a morphism is from being
injective. The following propositions shows that the categorical kernel still, in some
sense, encodes this information.

Proposition 1.1.2 Let ¢ : M — N be a monomorphism in a category A with a
zero-object 0. Then ker ¢ is the zero-morphism 0 — M.

Proof. Suppose ¢ : Z — M is a morphism such that ¢ o ¢ = 0. Since ¢ is a monomor-
phism, ¢ o = 0 = ¢ o 0 means that ¢ = 0 and so ( factors uniquely through the
zero-object, making the diagram

commute. This means that 0 — M is the, necessarily unique, kernel of ¢. O

Proposition 1.1.3 Let ¢ : M — N be a morphism in a category A with a zero-object 0.
Then ¢ is a zero-morphism if and only if ker ¢ is, up to isomorphism, the identity
on M.

Proof. Suppose ¢ is the zero-morphism. Then @ oidy; = 0cidp and so any morphism
¢ : Z — M factors uniquely through idy. Conversely, if idy is a kernel of ¢, then
@ = @oidy =0. 0

The main problems of the categorical kernel are the fact that they may not exist and,
even when they exist, it is not necessarily true that every monomorphism is a kernel,
as in A-Mod. For example, in the category of groups, kernels are normal subgroups
but monomorphisms correspond to all subgroups. All these problems will be solved
in the next section. For now, we observe that the dual notion (which inverses all the
arrows) of kernel is just as useful.
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Definition 1.1.5 — Cokernel. Let ¢ : M — N be a morphism in a category A with a
zero-object 0. The cokernel of ¢ is the coequalizer of ¢ and the zero-morphism. In
other words, it is a morphism 7t : N — C such that, whenever 3 : N — Z satisfies
3 o @ =0, there exists a unique morphism C — Z making the diagram

commute. We denote both C and : N — C by coker ¢.

Before we prove any properties of the cokernel, we present how it works in some
categories, since the reader may be unfamiliar with it.

m Example 1.1.1 — Cokernels in A-Mod. Let ¢ : M — N be a morphism of A-modules.
Here, the cokernel of ¢ is the quotient map 7t: N — N/im ¢, where im ¢ is the usual
set-theoretic image. Indeed, if § : N — P satisfies 3 o ¢ = 0, then im ¢ C ker 3 and
the universal property of the quotient induces a unique morphism B:N/ime — P
which makes the diagram

commute. In other words, m: N — N/im ¢ satisfies the universal property of the
cokernel. -

m Example 1.1.2 — Cokernels in Grp. Let ¢ : G — H be a morphism of groups. The same
argument as in A-Mod doesn’t work as the set-theoretical image may not be a normal
subgroup of H. Nevertheless, we may consider the smallest normal subgroup of H
containing im ¢, which we denote by N. Then the cokernel of ¢ becomes the quotient
map 7 : H — H/N. Indeed, if $ : H — H’ satisfies 3 o ¢ =0, then im ¢ C ker 3 and,
since ker 3 is a normal subgroup of H containing im ¢, N C ker 3. Now the same
argument as before works, showing that 7t : H — H/N satisfies the universal property
of the cokernel. .

= Example 1.1.3 — Cokernels in the category of Banach spaces. The same problem as
before happens frequently in topological settings. In the category of Banach spaces
with bounded (continuous) linear maps as morphisms, not every subspace defines a
quotient, only the closed ones. A similar reasoning as before shows that the cokernel
of a morphism T : X — Y is the quotient map Y — Y/N, where N is the closure of the
set-theoretical image im T in Y. n
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Itis actually the case that, whenever it exists, the cokernel of amorphism ¢ : M — N
is a quotient of N just as the kernel is a subobject of M. In order to make sense of that
in an arbitrary category, we invert the arrows in the definition 1.1.4.

Definition 1.1.6 — Quotient object. Let N be an object in a category A. We say that
two epimorphisms p : N — S and q : N — T are equivalent if there exists an
isomorphism S — T making the diagram

S —— 57T

commute. In other words, p and q are equivalent if they are isomorphic in the
coslice category N | A. A quotient object of N is an equivalence class for this
equivalence relation.

As before, it is clear by the universal property that all cokernels of a morphism
M — N belong to the same isomorphism class in N | A. So, by proving that cokernels
are epic, we prove that every cokernel is a quotient object.

Proposition 1.1.4 Let ¢ : M = N a morphism in a category A with a zero-object 0
and suppose that m : N — C is its cokernel. Then 7t is an epimorphism and so
coker @ is a quotient object of N.

Proof. We could do basically the same argument as in the proof of proposition 1.1.1,
but we’ll use this as an opportunity to understand a powerful idea: the duality
principle. Let «, 3 : C — D be morphisms such that o« o T = 3 o 7. Inverting all the
arrows, we see that P : C — N is the kernel of ¢°P : N — M and 7t°P o x°? = 7t°P 0 3P,
Since 7°P is a monomorphism by proposition 1.1.1, «°? = 3°? and so « = 3, proving
that 7t is an epimorphism. O

By inverting all the arrows as above, we can easily prove dual versions of the
propositions 1.1.2 and 1.1.3, which we state below.

Proposition 1.1.5 Let @ : M — N be an epimorphism in a category A with a zero-
object 0. Then coker @ is the zero morphism N — 0.

Proposition 1.1.6 Let ¢ : M — N be a morphism in a category A with a zero-object.
Then ¢ is a zero-morphism if and only if coker ¢ is, up to isomorphism, the identity
on N.

Everything we did so far only makes sense given the existence of zero-morphisms
in the category under consideration. There’s a natural way in which a category may
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be endowed with such morphisms.

Definition 1.1.7 — Preadditive category. A category A is said to be preadditive if each
set of morphisms Homa (M, N) is endowed with an abelian group structure, in such
a way that the composition maps are bilinear.

The exquisite reader may recognize that this is nothing but a category enriched over
Ab. Explicitly, in a preadditive category it makes sense to add or subtract morphisms
and this operation satisfies

o1 +12)=@ol;+@o; and (@1 +@2)op =@i0P+ @01,

whenever those compositions exist.

A preadditive category A may still lack zero-objects. But, given a zero-object, we
have two natural notions of zero-morphism M — N: the unique morphism M — N
which factors through the zero object and the identity of Homa (M, N). It is reassuring
to know that they coincide.

Proposition 1.1.7 In a preadditive category A, the following conditions are equiva-
lent:

(@) Ahas an initial object;
(b) A has a final object;
(c) Ahas a zero-object.

In that case, the zero-morphisms are exactly the identities for the group structure
of the hom-sets.

Proof. Clearly, (c) implies both (a) and (b). Since the dual of a preadditive category is
also preadditive, it suffices to prove that (a) implies (c). Let I be an initial object. The
group Homa (I, I) has only one element and so id; coincides with the group identity
of Homa (I, I). Now, if ¢ : M — L is any morphism, then

(P:ldIO(p:(1d1+1d1)0(p:ldIO(p+1dIO(p:(p—|—(p

and so Homa (M, I) is the trivial group. This proves that I is also a final object. Finally,
if A has a zero-object 0, then the groups Homa (M, 0) and Homa (0, N) are reduced to
their identities and so, by the fact that composition is bilinear, the zero-morphism
M — 0 — N is the identity of Homa (M, N). O

Observe that, in a preadditive category, two morphisms are equal if and only if their
difference in the corresponding hom-set is 0. This implies thata morphism ¢ : M — N
in a preadditive category is a monomorphism if and only if forall x : Z — M,

poa=0 = a=0.
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Similarly, it is an epimorphism if and only if forall 3 : N — Z,
Bop=0 = B=0.

We are now in a position to prove a converse to the propositions 1.1.2 and 1.1.5.

Proposition 1.1.8 Let @ : M — N be a morphism in a preadditive category A. Then
@ is a monomorphism if and only if ker ¢ is the zero-morphism 0 — M. Dually, ¢
is an epimorphism if and only if coker ¢ is the zero morphism N — 0.

Proof. The factthata monomorphism has the zero-morphism as its kernel was proved
in proposition 1.1.2. Conversely, suppose that 0 — M is a kernel for ¢ : M — N, and
let {: Z — M be a morphism such that ¢ o ¢ = 0. The universal property implies
that ¢ factors through 0 — M and so ¢ = 0, proving that ¢ is a monomorphism. The
statement about epimorphisms follows by duality. O

In some sense, life is simpler in the world of modules, since finite products and
coproducts coincide. Fortunately, this is already the case in preadditive categories.

Theorem 1.1.9 Let M and N be two objects in a preadditive category. Given a third
object P, the following are equivalent:

(a) there exist natural projections tpy : P -+ M and @iy : P — N such that P
satisfies the universal property of M x N;

(b) there exist natural injections 1y : M — P and N : N — P such that P satisfies
the universal property of M ][ N;

(c) there exist morphisms i\ : P — M, iy :P =+ N, iy :M = Pand iy : N = P
such that

M olm =idm, 7nolny =idn, TiMoln =0, Tinoum =0,

IMOTIM + Iy o7 — idp .

Moreover, under these conditions we have that

im = kermty, v = kermtv, v = coker Ly, TN = coker L.

If P satisfies any of the conditions above, we say that P is the direct sum M @ N.

Proof. By duality, it suffices to prove the equivalence of (a) and (c). Given (a), we
use the universal property of products to obtain our desired morphisms ty1 and ty as
the unique morphisms that satisfty 7pm o iy = idm, v 0 v = idn, T 0 v = 0 and
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WNOLM:OI

We then affirm that (ym o T\ + 1y © iy = idp. Indeed, observe that the left-hand side
satisfies

T[MO(LMOTtm+LN OT[N):T[MoLMOT[M+T[MOLN O TIN :T[M+O:7TM

TINO (M OTTM + INOTIN) = TIN O LM © TTm + TN © Iy 0 7Ty = O + 7Ty = TN

But then both 1p1 0 7tp1 4 1y 0 Ty and idp fit in the place of the dotted morphism which
makes the diagram

z

TN

commute. The uniqueness part of the universal property of products then implies
that they are equal, proving (c).

Now, given (c) and an object Q with morphisms ynp : Q = Mand yn : Q — N, we
need to show that there is a unique morphism y : Q — P making the diagram

Z

YN

commute. For the existence, we define vy := tm © ym + tn © Yn. The diagram above
then commutes since

TTMOY =TTM O M oYM +TTM @ IN O YN =YMm + 0 =vYm,

TINOY =TINOMOYM +TnOINOYN =0+VN =VN-
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Moreover, if y' : Q — P is another morphism making the diagram commute, then,

Y =idpoy' =(momm +inonn) oy’

=imommoyY +inomnoy

=MOYM TINOYN =Y.
This proves (a). Assuming all the equivalent conditions for P to be the direct sum
M @ N, we now show that 1y = ker . Since 7ty o ipm = 0, it suffices to prove that if

¢ : Z — P satisfies 7ty o ¢ = 0, then there exists a unique morphism Z — M making
the diagram

MM, p—= N
N 0
A

z

commute. We affirm that 7ty o ¢ is the desired morphism Z — M. Indeed, we observe
that

Mo (lmomm o) =Ttm oG
T[NO(LMOTIMOC):O:T[NOC
since T o iy = idpm and 7y o tm = 0. As before, using the uniqueness part of
the universal property of products, we have that 1\ o T\ 0 ¢ = ¢, proving that the
diagram above commutes. This is the unique morphism making it commute because,
as 7ty © Ly = idm, tm is @ monomorphism.
We can prove that iy = kermy in the same way and then 7y = coker iy and
Tty = coker ty follow by duality. O

A perk from the fact that direct sums in preadditive categories have both canonical
projections and canonical injections is that it allows us to write morphisms using
a matrix notation. If My, M;, Ny, N, are four objects in a preadditive category, a
morphism

@: M1 &Mz — Ny @ N,

is completely determined by the four morphisms

@11 =mo@ot : My — Ny
Pr2=mmo@oly: My —= Ny
@21 =mo@ol;: My — N,
@2 =T o@oly: My — Nj.

Henceforth we will represent such a morphism ¢ by the matrix

<(Pn @12)
©®21 Q22 '
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Using the correspondence between A-module morphisms A — A and elements of A,
this is nothing but the matrix notation used in linear algebra to describe A-module
morphisms A®™ — A®™_ Given another morphism

P:N; &Ny, = Py @ Py,

the matrix representation of the composition 1 o ¢ is simply the matrix product of the
individual matrices. Similarly, the sum of two morphisms M; & M, — N; @& N, is
represented by the sum of the individual matrices. It is clear that this notation allows
us to describe morphisms of the form

for any positive integers n, m.

Finally, we impose the existence of zero-objects and binary products. This suffices
to guarantee the existence of finite products and coproducts, which coincide by the
theorem 1.1.9.

Definition 1.1.8 — Additive category. A preadditive category A is additive if it has a
I zero-object and binary products.

The prototypical example of an additive category surely is A-Mod but Ab and the
category of Banach spaces with continuous linear maps are also examples of additive
categories. Nevertheless, Grp is not additive since finite products and coproducts do
not coincide, and neither is the category of Banach spaces with linear contractions as
finite products and coproducts are not isometric.

Even though additive categories do not suffer from some of the problems we met
before, they may still fail to have kernels or cokernels. For example, the category of
finitely generated A-modules, when A isnot noetherian, is additive but has morphisms
without kernels. Furthermore, even when the additive category in consideration has
kernels and cokernels, the usual first isomorphism theorem may not hold. We discuss
those questions in the next section.

We finish this section with another interesting consequence of the theorem 1.1.9:
the preadditive structure in an additive category is unique.

Proposition 1.1.10 Let A be a category with a zero-object and binary products. Then
A has at most one abelian group structure on its hom-sets.

Proof. We endow A with any preadditive structure, and then we’ll show that the
addition of morphisms is actually determined by the limit-colimit structure of A.

Let @1,¢92 : M — N be two morphisms in A. We defineamapx: M - M e M
by the universal property of products and a map 3 : N @ N — N by the universal

10
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property of coproducts:
idm M N idn
% N
M --%5> MaoM and NoN--F4 N
w‘ y
idn

We observe that, by the theorem 1.1.9 and the uniqueness of the universal property
of products, the equations

7TMO(LM+LT/\/[):7TMOL]\/[+7TMOL]/\A:id]\/[+O:idM:7TMOOC,
T o (v + ) =TT o tm + 7Ty 0 Ly = 0+ idym = idpm = 713 0
imply that « = 1\ + 1),. The same exact reasoning shows that 3 = 7ty + 71y

Now, we affirm that the composition M - M @& M — N & N — N, where the map
Pp:MEM — NO N in the middle is given by

@1 O
0 @)’
is the sum @ + @,. Indeed, the composition is

Bowoa=(mn+m) oo (i + thy)
=mnoPouy+myodoipm +rnoYory + 1y ooty
=@1+0+0+@2=0¢1+ @2

by the very definition of . O

1.2 Abelian categories

As we saw, whenever kernels and cokernels exist, they behave reasonably well. How-
ever, their possible lack of existence prevents us from going further. Moreover, despite
the fact that kernels are always monomorphisms and cokernels are always epimor-
phisms, there’s no guarantee that every monomorphism is a kernel and that every
epimorphism is a cokernel. It just so happens that demanding these properties is
enough for us to have the first isomorphism theorem.

11
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Definition 1.2.1 — Abelian category. An additive category A is abelian if it possesses
kernels and cokernels, if every monomorphism is the kernel of some morphism
and if every epimorphism is the cokernel of some morphism.

For now, our only real example of an abelian category is A-Mod and its variants, such
as Ab, the category of finitely generated modules over a noetherian ring, the category
of finite abelian groups, their opposites, and so forth. But the reader shouldn’t worry
about having few examples; a plethora of abelian categories lie ahead.

In an abelian category, every monomorphism is the kernel of some morphism. We
can actually be more precise.

Proposition 1.2.1 In an abelian category A, every monomorphism is the kernel of its
cokernel and every epimorphism is the cokernel of its kernel.

Proof. Let ¢ : M — N be a monomorphism which is the kernel of some morphism
B : N — Z. Since A is abelian, ¢ has a cokernel t: N — C. The universal property of
the cokernel shows that (3 factors through .

We show that ¢ satisfies the universal property defining the kernel of . Let K — N
be a morphism whose composition with 7t is the zero-morphism.

Z
V
M —2+ N ”>Iﬁ

e

By the commutativity of the diagram, K — N — Z is also the zero-morphism. But ¢
is the kernel of 3 and so there exists a unique induced morphism K — M, proving
our claim. The statement about epimorphisms follows by duality. O

This proposition implies a quick criterion for deciding when a full subcategory of
an abelian category is abelian.

Corollary 1.2.2 Let Abe an abelian category and let C be a full subcategory. Suppose
that the zero-object of A is in C and that C is closed under binary sums, kernels,
and cokernels. Then C is also abelian.

12
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Proof. The only thing we have to verify is that every monomorphism is the kernel of
some morphism and that every epimorphism is the kernel of some morphism. Now,
let @ be a monomorphism in C. This implies that its kernel in C is the zero-morphism
but, since kernels in C and A coincide, ¢ is also a monomorphism in A. We observe
that, as C is closed under cokernels, 1 := coker ¢ is a morphism in C. Since A is
abelian, the preceding proposition implies that ¢ satisfies the universal property of
ker in Aand, a fortiori, in C. This proves that every monomorphism in C is the kernel
of some morphism in C. The result about epimorphisms follows by duality. O

Recall that in any category, isomorphisms are both monic and epic. The converse
may fail to hold even in usual categories, such as Ring, where the inclusionZ — Qis a
monomorphism and an epimorphism but is clearly not an isomorphism. Luckily, the
proposition 1.2.1 also implies that the converse holds in abelian categories.

Corollary 1.2.3 Let @ : M — N be a morphism in an abelian category A. Then ¢ is
an isomorphism if and only if it is both a monomorphism and an epimorphism.

Proof. If ¢ is both monic and epig, its kernel is 0 — M and its cokernel is N — 0.
Furthermore, by proposition 1.2.1, ¢ is the kernel of N — 0 and the cokernel of 0 — M.
Now consider the diagram below.

N
lidN
> N

Since N — N — 0 is the zero morphism and ¢ is the kernel of N — 0, we obtain a
unique morphism 1 : N - M making the diagram

0 y M —2 y 0

N
h lidN
)</
B

0 y M —2— » 0

commute. As @ o1 = idy, this shows that ¢ has a right-inverse. Similarly, the fact that
¢ is the cokernel of 0 — M implies the existence of a unique morphismn: N - M
such that the diagram

M

IS
ldMT \\\n
AN

0— M —25N—>0
commutes. It follows that ¢ has both a left-inverse n and a right-inverse {. Thus,
n =1 is a two-sided inverse of ¢ and so ¢ is an isomorphism. The converse holds in
every category. [

13
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We observe that this corollary implies that the category of Banach spaces with
bounded linear maps is not abelian. A bounded linear map T : X — Y is a monomor-
phism if it’s injective and an epimorphism if imT is dense in Y. But there ex-
ists monomorphisms with dense image which are not isomorphisms; the inclusion
t; — {, for example.

Earlier, we said that demanding every monomorphism to be a kernel and every
epimorphism to be a cokernel is enough to guarantee the first isomorphism theorem.
In order to understand how we should even enunciate such a result, we have to make
sense of images in abelian categories. As with kernels and cokernels, this is best done
via a suitable universal property.

Let’s translate our intuitive notion of the image of a morphism ¢ : M — N in Set to
a purely arrow-theoretic statement. The main point in Set is that im ¢ is the smallest
subset of N to which we can restrict the codomain of ¢ to. In other words, we can
factor ¢ : M — N as

M— imp —— N,

where im ¢ — N is injective and im ¢ is the smallest subset of N which allows this
decomposition. Switching to categorical terms, we arrive at the following universal
property: the image of ¢ : M — N is a monomorphism t : K — N such that ¢
factors through 1 and that is initial with these properties. That is, if L — N is another
monomorphism through which ¢ also factors, then it exists a unique morphism K — L
such that the diagram

/

~

A
-

~

|

commutes. In an arbitrary category, it could very well happen that no morphism
t : K — N satisfies this universal property. Luckily, this is never the case in the realm
of abelian categories.

Proposition 1.2.4 Let @ : M — N be a morphism in an abelian category, and let
t : K = N be the kernel of coker ¢. Then t is a monomorphism through which ¢
factors, and it is initial with these properties.

Proof. It is clear that ¢ is a monomorphism by the fact that it is a kernel. Since
t : K — N is the kernel of coker ¢ : N — C,, the diagram

coker

M —— N Co

NS

K

14



1.2 Abelian categories

commutes. The universal property of the kernel then implies the existence of a
morphism M — K factoring ¢ through 1. We now show that t satisfies the desired
universal property. Let A : L — N be another monomorphism through which ¢
factors, and consider its cokernel N — C,.

/\

\_/‘

coker A

Ca

Since @ factors through A, the composition M —+ N — C, is 0. The universal property
of coker ¢ induces a morphism C, — Cj:

Observe that since K -+ N — C,, is the zero-morphism, so is K - N — C,. But
A is a monomorphism, which implies that it is the kernel of cokerA. Its universal
property then implies the existence of a unique morphism K — L making the diagram
commute. [

Since all there is to know about the image of a morphism ¢ is encoded in the
im ¢ = ker(coker ¢ ) mantra, we use it to define images from now on.

Definition 1.2.2 — Image. Let ¢ : M — N be a morphism in an abelian category. Its
image, denoted im @, is the kernel of coker ¢.

As itis probably clear by now, the image of a morphism ¢ : M — N of A-modules is
simply the inclusion I — N, where I is the set-theoretical image of ¢. Indeed, coker ¢
is simply N — N/I and its kernel is nothing but I — N.

Inverting all the arrows, we arrive at the dual notion of the image of a morphism.

Definition 1.2.3 — Coimage. Let ¢ : M — N be a morphism in an abelian category.
I Its coimage, denoted coim ¢, is the cokernel of ker ¢.

By duality, the proposition 1.2.4 gives a universal property for the coimage of a
morphism ¢ : M — N in an abelian category: it is an epimorphism 7t : M — C such

15



1 Abelian categories

that ¢ factors through 7 and such that if M — D is another epimorphism through
which ¢ also factors, then it exists a unique morphism D — C making the diagram

(0]

/—\

M — > N

¥

-

commute.

Now, our sought-for first isomorphism theorem is simply a particular relation be-
tween the image and the coimage of a given morphism. In A-Mod, the coimage of a
morphism ¢ : M — N is the quotient map M — M/K, where K is the set-theoretical
kernel of ¢@. The first isomorphism theorem in this context amounts to the fact that
we can factor ¢ : M — N as

M /K y 1 —— N,

coim ¢ im @

where the morphism in the middle, induced by ¢, is an isomorphism. In this form,
the result holds in arbitrary abelian categories.

Theorem 1.2.5 — First isomorphism theorem. Let ¢ : M — N be a morphism in an
abelian category. Then ¢ can be decomposed as

P

M > C —— K > N,

where M — Cis the coimage of ¢, K — Nisitsimage and C — Kisanisomorphism.

Proof. The universal properties of the image and of the coimage give two decompo-

sitions of ¢ as follows:
/ Y(p
M L > N.
coirrh /
C

In order to use the universal property of im ¢ to obtain an induced morphism K — C,
we must prove that 3 is a monomorphism. (Similarly, we could prove that « is an
epimorphism and use the universal property of coim ¢.) Since every monomorphism

16



1.2 Abelian categories

is the kernel of its cokernel, ker(coim () = ker(coker(ker )) = ker 3. It suffices then to
show that ker(coim 3) = 0. We observe that the composition of coim 3 and coim ¢

B
M =24 C /];\ N
\wifs/

is an epimorphism through which ¢ factors. The universal property of coim ¢ then
implies that coim 3 is an isomorphism, concluding that ker = 0 and so 3 is a
monomorphism.

As we said above, the universal property of im ¢ induces a morphism 1y : K — C
making the diagram

K

o /// im @
/

v

M ,
/
/
/
. /
Com% V
C

commute. Since 3 o1 = im ¢ is a monomorphism, so is 1. Similarly, the fact that
P o & = coim @ is an epimorphism implies that 1\ has the same property. It follows
that 1 is an isomorphism, and so it suffices to consider its inverse to be our desired
morphism C — K. O

// N
B

As we'll see, this theorem even gives an alternative definition of abelian category.
For now, suppose that ¢ : M — N is a morphism in an additive category that possesses
kernels and cokernels. In this context, it is not true that ker(coker ¢) : K — N satisfies
the universal property of the image of ¢! but, since (coker ¢) o ¢ = 0, the universal
property of kernels implies that ¢ factors through ker(coker ¢).

M —25 N
\\\\ Tker(coker @)
\\J

K

Similarly, the universal property of cokernels implies that M — K factors through

For a counterexample, consider the morphism ¢ : Z — Z given by multiplication by 2 in the category
of torsion-free abelian groups. The reader may verify that this is an additive category, with kernels
and cokernels, and that ker(coker ¢) = id : Z — Z. Then ¢ is another monomorphism through
which ¢ factors, but there’s no morphism induced by the universal property of images.

17



1 Abelian categories

coker(ker @) : M — C via a morphism @ : C — K.

M —2—+ N
coker (ker @ )l Tker(coker ®)
C--%2-5K

Our previous theorem shows that @ is an isomorphism whenever we're dealing with
an abelian category. We affirm that this property also suffices to define an abelian
category.

Proposition 1.2.6 Let Abe an additive category that possesses kernels and cokernels.
Then A is abelian if and only if for every morphism ¢ : M — N, the induced
morphism @ : C — K is an isomorphism.

Proof. One direction was shown in the previous theorem. Conversely, suppose that
@ : M — N is a monomorphism. Then ker ¢ = 0 and so ¢ factors as

M —25 N

idMl Tker(coker @)

M —2 X.

This implies that ¢ satisfies the universal property of ker(coker ¢). (Since ¢ and
ker(coker @) define the same subobjects of N.) By duality, it follows that every epi-
morphism is a cokernel. O

1.3 Unions and intersections

Let M be an object in a (not necessarily abelian) category A. As we saw in the beginning
of this chapter, a subobject of M is an equivalence class of monomorphisms s : S — M.
Given another subobject defined by t : T — M, we say that s is smaller than t if there
exists a morphism S — T, automatically monic, making the diagram

Se——T

N\ A

commute. This is independent of the representatives chosen for each equivalence
class. Also, the morphism S — T is unique whenever it exists. This endows the
collection of all subobjects of M with the structure of a partially ordered class.? In
particular, we are able to define the union and the intersection of a family of subobjects.

2t need not be a set, even when the category in question is abelian. We say that a category is
well-powered if the subobjects of every object constitute a set.

18



1.3 Unions and intersections

Definition 1.3.1 Let M be an object of a category A. The union, if it exists, of a family
of subobjects of M is their supremum in the partially ordered class of subobjects.
Similarly, the intersection of a family of subobjects is their infimum.

We'll often use the customary symbols U and N to denote the union and the inter-
section of subobjects, leaving their target implicit.

In A-Mod, the union of two submodules S and T of a given module M is simply
their sum S + T. In other words, it’s the image of the canonical morphism S®T — M,
which sends (s, t) to s +t. This description generalizes to arbitrary abelian categories.

Proposition 1.3.1 Let A be an abelian category and S; — M be a finite collection of
subobjects. The union of those subobjects exists and is given by the image of the
natural map €; S; — M.

Proof. Factoring each S; — M through the coproduct and then factoring the resulting
morphism through its image we obtain the diagram below.

ZON

@i Si > K
In particular, K — M is a subobject which is greater than all of the S; — M. Now,
suppose that T — M is another subobject through which all the S; — M factor. The
universal property of coproducts induces a dashed morphism making the diagram

i

— <+

D, S: > K < > M

commute. (The lower triangle commutes by the unicity of the induced morphism
D, Si — M.) Finally, the universal property of images induces a morphism K — T,
proving that K — M is indeed the supremum of the S; — M. O

The same proof shows that the preceding description also works for infinite unions,
replacing the direct sums by coproducts, whenever those coproducts exist in our
category.

In a wide range of cases, the proposition below describes binary intersections.

Proposition 1.3.2 Let A be a category with pullbacks. The intersection of two sub-
objects S =+ M and T — M exists and is given by their pullback.

19



1 Abelian categories

Proof. We recall that, in absolute generality, pullbacks preserve monomorphisms. [3,
Proposition 2.5.3] That is, if

P T
t’l lt
S———M
is a cartesian diagram and s is a monomorphism, then so is s’. Similarly for t and t’,

of course. In particular, P —+ M is a subobject which is less than S -+ M and T — M.
Moreover, P — M is their infimum, due to the universal property of pullbacks. O

Once again, the same proof shows that the intersection of a family of subobjects
Si — Mexists and is given by the limit of the diagram constituted of those morphisms,
as long as such limit exists.

Fortunately, abelian categories possess pullbacks® and they have simple descrip-
tions. In A-Mod, the pullback of two morphisms ¢ : M — P and 1} : N — P is given
by submodule of M & N determined by the elements (m, n) satisfying ¢ (m) =1 (n).
Basically the same description works more generally. In particular, the collection of
subobjects of every object in an abelian category form a lattice.

Proposition 1.3.3 Lets : S = M and t : T — M be two morphisms in an abelian
category A. The kernel of the morphism

(s,—t): ST —-M

satisfies the universal property of the pullback S xp T. Dually, if s’ : N — S and
t’: N — T are two morphisms in A, the cokernel of

<_St) N-SeT

satisfies the universal property of the pushout S| [ T.

Proof. Letts : S®T — Sand 7ty : S® T — T be the canonical projections. Moreover,
denote the kernel of (s,—t) by k: P - S@ T, and pose s’ := my o k, t’ := 715 0 k. Being
more precise, the first statement is that the square

T
e
— M

S

Sl

—

=
»n<—— T

3 Abelian categories are even finitely complete and finitely cocomplete, since all finite limits can be
constructed from terminal objects, pullbacks and equalizers. [3, Proposition 2.8.2]
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1.3 Unions and intersections

is cartesian. We observe that

Uy

(s,—t) =idsgT 0o(s,—t) = (ﬂs) o(s,—t) =soms —torrr.
T

This implies the commutativity of the square above, given that

sot' —tos’=somgok—tomrok=(s,—t)ok=0.

We now prove that the square satisfies the universal property of pullbacks. Let
@:Q—Sand P : Q — T be such that s o @ =t 0. Since

(s,—t)o($)=so@—to¢:o,

the universal property of kernels gives a unique morphism p : Q — P making the
diagram
Q —+r—pP
() “ser

commute. Moreover, we have that
/ < )
S ou TOKOMU TO 11) II)

and, similarly, that t' o u = ¢. The unicity of these factorizations follows from the
unicity in the universal properties of kernels and of products. As usual, the other
statement follows by duality. O

As we saw in the proof of proposition 1.3.2, pullbacks preserve monomorphisms.
Dually, pushouts preserve epimorphisms. In abelian categories we have even more.

Corollary 1.3.4 Let A be an abelian category. Suppose that

!

;)M

S/
——

-+
»n——d

is a cartesian diagram in A, and that s is an epimorphism. Then s’ is also an epimor-
phism and the square is also a pushout. Dually, the pushout of a monomorphism
is a monomorphism, and the corresponding square is also a pullback.
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1 Abelian categories

Proof. We keep the same notations as in the proof of the previous proposition. We
begin by proving that (s, —t) is an epimorphism. Let p : M. — N be a morphism such
that p o (s,—t) = 0. Then, denoting by ts : S — S @ T the natural injection, we have
that

0O=po(s,—t)ols=po(soms—tomy)otlg =pos.

This implies that p = 0, for s is an epimorphism. In particular, (s, —t) = coker k due
to proposition 1.2.1.

Now, let 0 : T — Z be a morphism such that 0o s’ = 0. Since s’ = 7y o k, the
universal property of cokernels gives a morphism ¢ : M — Z making the diagram

P_*,5aT UM

commute. But the equation
Cos=C(o(s,~t)ols=00mrols =0

implies that ¢ = 0, since s is an epimorphism. Finally, the fact that 71 is an epimor-
phism and satisfies 0 o 7ty = 0 implies that o = 0, proving that s’ is an epimorphism
as well.

We now show that our cartesian square is also cocartesian. Letn : S — Q and
A: T — Q be two morphisms making the diagram

commute. Observe that, by the universal property of pullbacks, there exists a dashed
morphism making the diagram

K/_\
S

N
—

P
il
S

T
ker s lt .
—— M
HX% Q
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1.3 Unions and intersections

commute. This implies thatn o ker s = 0, and so the universal properties of cokernels
(since s is the cokernel of ker s) gives a morphism & : M — Q satisfyingn = £ os.
Moreover, we have that

Aos'=mot' =§osot' =&otos’.

It follows that A = & o t, since s’ is an epimorphism. In other words, & makes the
diagram

S/

—

.
N

— M

S

commute. Such a morphism is unique, due to s being an epimorphism. We conclude
the result. The other statement follows by duality. O

P
il
S

Given two subobjects S — M and T —+ M, we can naturally form the commutative
diagram below.

SAT —— T

| l

Se—SUT

Since we can always complete this square into a diagram of the form

SAT —— T

| l

Se—SUT

\>M,

the proposition 1.3.2 gives that our original square is always cartesian. The same
reasoning, along with the preceding corollary, implies that it’s also cocartesian. The
fact that this square is, at the same time, a pullback and a pushout is usually phrased
as the motto binary unions in abelian categories are effective. In other words, to define a
morphism SUT — P, it suffices to find morphisms S — P and T — P which agree on
the intersection SN T.

A final interesting result, which will be the soul of the next few propositions, can
also be proved using the same circle of ideas.
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1 Abelian categories

Proposition 1.3.5 Let A be an abelian category. Given a commutative square
T
I
M

in A, consider the induced morphisms k : K’ — K and ¢ : C’ — C between the
kernels and cokernels of s’ and s:

s/

—

o4
»n<—— T

_s

i

coker s’ /

C
lc
C

b

K/ kers’> P s
kl t/
K S

> T
lt
> > M

7
ker s S coker s

4
\

If the original square is cartesian, then k is an isomorphism. Dually, if the original
square is cocartesian, then c is an isomorphism.

Proof. Suppose that our square is cartesian, for the other statement follows by duality.
The universal property of pullbacks gives a dashed morphism, making the diagram

o

— T

-

M

|

S

commute. Then, since K = P — T is zero, the universal property of kernels gives a
dashed morphism k’ : K — K’ making the diagram

K/ ks, p y T
k’i yt’l lt
K —— S——M

commute. Checking the commutativity of the previous diagrams, we remark that

t'o(kers’)ok’ok=t'opok=(kers)ok =t"o (kers’)
s’o(kers’)ok’ok=s"opok=00k=5s"o (kers’).
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1.3 Unions and intersections

In other words, ker s’ and (kers’) o k’ o k are two morphisms making the diagram

KI

kers’
(ker s")ok’ok N

—

T
t’ lt
— M

S

w9

commute. The uniqueness in the universal property of pullbacks implies that they’re
equal. Since ker s’ is a monomorphism, k’ o k = idg:. Furthermore,

(kers)okok’ =t"o (kers’) ok’ = kers.
As ker s is monic, we have k o k' = idk; proving that k is an isomorphism. H

We basically defined an abelian category in order to have the first isomorphism
theorem. Somewhat surprising, all the other isomorphism theorems are also true in
this generality.

If t : T — M s a subobject, we’ll denote the target of coker t by M/T, as it would be
in A-Mod. We remark thatif S — M is a subobject containing t, then S/T is naturally a
subobject of M/T. That is, there exists a dashed monomorphism making the diagram

commute. Indeed, the universal property of the cokernel on the left gives the existence,
and the universal property of the cokernel on the right implies that the trapezoid above
is a pushout; proving that the dashed morphism is monic.

Proposition 1.3.6 Lett: T — M be a subobject in an abelian category. Then,

u : {subobjects of M containing t} — {subobjects of M /T}
(S—= M)~ (S/T - M/T)

is a lattice isomorphism. Moreover, if S — M is a subobject containing T, the objects
(M/T)/(S/T) and M/S

are isomorphic.
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1 Abelian categories

Before we begin the proof, recall that a partially ordered class may be seen naturally
as a category. In this context, a lattice is a partially ordered class with binary products
and coproducts. Similarly, a morphism of lattices can be seen as a functor preserving
such (co)products.

Proof. In order to prove that u is an isomorphism of lattices, we define an inverse.
Consider the function v, which sends a subobject Q — M/T to the top arrow in the
pullback

P— M

L

Q — M/T.

Since T - M — M/T is zero, the universal property of pullbacks gives a dashed
morphism making the diagram

P M

l lcoker t

Q —— M/T

commute, proving that P - M contains T — M. It’s clear that both u and v are
order-preserving. In other words, they are functors. Applying u to the subobject
P — M, we obtain the commutative diagram below.

N
N

P/T

N

Q > M/T

Observe that the morphism T — P — Q — M/T is zero, due to the commutativity
of the diagram. Actually, T — P — Q is already zero, as Q — M/T is monic. Then,
the universal property of cokernels gives a morphism P/T — Q making the diagram
above commute. This morphism is both a monomorphism and an epimorphism, by
the commutativity of the triangles on its sides. In other words, u o v is the identity
functor.
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1.4 Exactness in abelian categories

Now, let S — M be a subobject containing t : T — M. As we say when defining the
map S/T — M/T, the commutative square

S— M

L

S/T —— M/T

is cocartesian. The corollary 1.3.4 implies that it’s also cartesian, proving that v o wis
also the identity functor. Since u is an equivalence of categories, it preserves products
and coproducts. In particular, it’s an isomorphism of lattices.

The isomorphism between (M/T)/(S/T) and M/S follows from the proposition
1.3.5, applied to the cocartesian square above. O

The last isomorphism theorem also follows from the machinery developed in this
section.

Proposition 1.3.7 Let S =+ M and T — M be subobjects in an abelian category. Then
the objects
(SuT)/T and  S/(SNT)

are isomorphic.

Proof. Since binary unions in abelian categories are effective, the commutative dia-
gram

SNT —— T

| l

Se—SUT

is a pushout. The result then follows from the same proposition 1.3.5. O

1.4 Exactness in abelian categories

After all this foundational work, we can at long last understand how exact sequences
work in an abelian category.

Definition 1.4.1 — Exact sequence. Consider a sequence of objects and morphisms in
an abelian category:

' M —2 5 N 2, p

We say that this sequence is exact at N if ker{ and im ¢ define the same subobject
of N. It is exact if it’s exact at every object.
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1 Abelian categories

As it is the case in A-Mod, most properties about morphisms can be stated in terms
of exact sequences. For example,

0 >y M —2 5 N

is an exact sequence if and only if ¢ is a monomorphism. Likewise,

0 sy M —2 s N PP

is an exact sequence if and only if @ is a kernel of . Also,

o

0 sy M —2 3 N Y p

is exact if and only if ¢ is a kernel of 1 and 1 is cokernel of ¢. These last exact
sequences are so important that they deserve a name.

Definition 1.4.2 — Short exact sequence. An exact sequence of the form

0 y M —2 5 N 25 p > 0.

is said to be a short exact sequence.

Another reason for the importance of short exact sequences is that we can check
the exactness of an arbitrary sequence by intertwining it with short exact sequences.
Let’s illustrate this procedure with a sequence of the form

@ @ @
M] 1)l\/[z 2>M3—3>M4.

Using the theorem 1.2.5, we can enlarge our diagram to be

coim (p/‘ Xn P coim q/‘ \njl ©3

M] —> Mz ez

ker ¢ coker @3
coim @3 im @y

C1 C5.

Using that kernels and images are monic and that cokernels and coimages are epic,
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1.4 Exactness in abelian categories

we obtain a yet larger diagram which is exact at all the C;, at M, and at M.

\ / \ /
coim (p/ Xn @1 coim q)/‘ Y‘i @3

My —2 5 M, LETEENY VR s My
ker(V . qx A . ﬁmm
C; Cs
/ / \ N\
0 0

Now, we affirm that our original sequence is exact if and only if those four diagonal
sequences are exact. Indeed, the only place where the diagonal sequences could lack
exactness is at M, and Mj;. Being exact at M, means that ker(coim ¢,) = im(im ¢4)
which is equivalent to ker ¢, = im ;. The same holds for exactness at M3, and it’s
clear that this procedure generalizes to sequences of arbitrary length.

A particularly frequent kind of short exact sequence appears when we consider the
direct sum of two objects M and N. Since M & N fulfills both the role of the product
and the coproduct of M and N, we have a natural injection t : M — M @& N and a
natural projection w: M @& N — N. These objects fit nicely into a sequence

0 y M —— M@ N —"= N > 0,

which is exact since t is the kernel of 7t and 7t is the cokernel of . (Theorem 1.1.9.)
This is the prototypical example of a split exact sequence.

Definition 1.4.3 — Split exact sequence. A short exact sequence

0 > M > N > P > 0

0 > M > N s P s 0
[ | |
0O— M —— M aP = P/ > 0

in which all the vertical maps are isomorphisms, t is the natural injection and 7 is
the natural projection.

Understanding which exact sequences are split will allow us to understand injective
and projective objects better, to understand when a morphism has a right- or left-
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1 Abelian categories

inverse, and to gain a refined version of the first isomorphism theorem. The following
theorem takes care of these last two tasks.

Theorem 1.4.1 — Splitting lemma. A short exact sequence of the form

0 s M —2 5 N Y p > 0
is split if and only if one of the conditions below is satisfied:
(a) there exists a morphism o : P — N such that{ o 0 = idp;

(b) there exists a morphism p : N — M such that p o ¢ = idm.

Proof. If the sequence is split, then by composing the natural injections/projections
with the vertical maps in the definition 1.4.3 we obtain the desired morphisms o : P —
Nandp: N — M.

Conversely, we suppose that (a) holds and prove that the sequence is split. Our
approach will be based on the construction of a morphism p : N — M as in (b) such
that

poe@=idm, Yoo=idp, poo=0, Ppoe=0,
@op+ooP =idy.
This is enough for the theorem 1.1.9 to imply that N is isomorphic to the direct sum
of M and P. We already have two of the equations: ) o 0 = idp and P o ¢ =0.

In order to find a morphism p such that ¢ o p + 0 01 = idn, we consider the
morphism idn —o 0. Observe that

VYo (idy—0cop) =P —1Pooop =0.
idp

The universal property of kernels, by the fact that ¢ = ker1, implies the existence of a
unique morphism p : N — M such that ¢ o p = idn —0 01, proving another equation.
Finally, we observe that, since ¢ is a monomorphism,

popog=(idy—0op)op=p—0copop =0
0
implies that p o ¢ = idp. Similarly,
popoo=(idy—oop)oo=0c—0o0poo=0
id
idp

and so p o 0 = 0, proving the last equation.
The proof that (b) implies that the sequence is split is basically the same. O
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1.5 Functors on abelian categories

As promised, the splitting lemma gives a necessary and sufficient condition for a
morphism to have a right- or left-inverse. We recall that a morphism that has a right-
inverse is necessarily an epimorphism and that a morphism that has a left-inverse is
necessarily a monomorphism.

Corollary 1.4.2 Let ¢ : M — N be a morphism in an abelian category. Then ¢ has a
left-inverse if and only if the sequence

0 sy M —2y N ckere ¢ s 0

is split, and it has a right-inverse if and only if the sequence

0 Q1N V LN y 0

is split.

The splitting lemma also provides a refinement of the first isomorphism theorem.
For that, we observe that a morphism ¢ : M — N determines a sequence

0 y K L@y \ o) g > 0,

which is exact since ker ¢ is the kernel of coim ¢ = coker (ker @) (every monomorphism
is the kernel of its cokernel) and coim ¢ is the cokernel of ker ¢. We also recall that,
due to the first isomorphism theorem, I is isomorphic to the source of im ¢.

Corollary 1.4.3 Let @ : M — N be a morphism in an abelian category, let ker ¢ :
K — M be its kernel and coim ¢ : M — I be its coimage. If there exists a morphism
o : I — M such that (coim ¢) o 0 = id; or a morphism p : M — K such that
poker =idg, then M =K & 1.

In the category of finite-dimensional vector spaces over a field, this result holds
unconditionally, since two such vector spaces are isomorphic if and only if they have
the same dimension. Thus, this corollary follows from the rank-nullity theorem. But,
in general abelian categories, the decomposition M = K ¢ I need not hold.*

1.5 Functors on abelian categories

Just as all the useful morphisms on a group must preserve its structure, so must the
useful functors on a preadditive category.

ust take the projection Z — Z/2Z, for example.
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1 Abelian categories

Definition 1.5.1 — Additive functor. Let A and B be two preadditive categories. A
functor F : A — B is said to be additive if, for all objects M, N in A, the induced map

Homa (M, N) — Homg(F(M), F(N))
¢ = Flo)

is a morphism of groups.

Basically all the functors defined between preadditive categories that we’ll en-
counter are additive. Some examples are Homa(M,—) and, in A-Mod, the tensor
product functor M ® —.

There’s an interesting criterion for a functor to be additive. For that, we observe that
if F : A — Bisa functor between additive categories and M, N are two objects of A, then
the universal property of products induces a morphism F(M & N) — F(M) & F(N):

F(M)

where F(M) @ F(N) — F(M) and F(M) @ F(N) — F(N) are the natural projections.
Similarly, the universal property of coproducts induces a morphism F(M) & F(N) —
F(M @ N).

Proposition 1.5.1 Let F : A — B be a functor between additive categories. Then the
following are equivalent:

(a) Fisadditive;

(b) the natural map F(M) & F(N) — F(M & N) is an isomorphism for every M, N
inA;

(c) the natural map F(M @ N) — F(M) @ F(N) is an isomorphism for every M, N
in A.

Proof. Due to the fact that an additive functor preserves composition and addition of
morphisms, the theorem 1.1.9 gives automatically that (a) implies (b) and (c). Also,
(b) and (c) are equivalent since the uniqueness part of the universal property of the
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coproduct
F(IM) @ F(N) —— F(M @& N) —— F(M) ® F(N)

implies that F(M) @ F(N) — F(M @& N) — F(M) & F(N) is the identity map.
Now, we assume (b) and (c) and prove (a). Recall from the proof of the proposi-
tion 1.1.10 that the sum of two morphisms @1, @, : M — N can be written as the

composition
© 0

M— Mé&M —— NN —— N.

W

We apply the functor F and consider the following diagram

(52

F(M) FIM e M) » F(N @& N) —— F(N),

\ T (F(Zm F(:)Z)) l /

M) —— F(N

which we claim to be commutative. Observe that the composition of the morphisms
on the top is F(¢; + ¢,) and the composition of the morphisms on the bottom is
F(@1) + F(@2). The commutativity of the diagram then implies (a).

Both triangles commute by the very definition of the morphisms F(M) & F(M) —
FIM@&M) and F(N®N) — F(N) ®F(N). The commutativity of the inner square is just
as natural, but a little notationally awkward. Let’s denote the morphisms involved as

follows:

FMaM) —*L S FINe N)

I

F(M) @ F(M) —Y— F(N) @ F(N).
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Recall that{: M@ M — N @ N is the unique morphism such that

Mmool = @ Mmoo, =0

Mmoot =0 Mool = @;.

By applying the functor F to these relations and recalling that F(1;) = « o (; and
F(my) = @y o B, where (; : F(M) — F(M) @ F(M) and 7; : F(N) & F(N) — F(N) are
the natural inclusions and projections, we get that 3 o F(1) o « satisfies the defining

equations for
<F (¢1) 0 )
0 Flo2)/)

This proves the commutativity of the square. O

Our next goal is to prove that if C is a small category and A is an abelian category,
then the category of all functors and natural transformations Fun(C, A) is also abelian.
This is a generalization of a fact that will become very important to us in the future:
the category of presheaves over an abelian category is abelian.

The reader might wonder the raison d’étre of the set-theoretic condition above. If C
is not small, then the objects of Fun(C, A) doesn’t even form a class. If it were a class,
then a functor C — A would be a set, since a set is defined to be a collection that is
a member of some class. But then we could use the axiom of replacement to deduce
that the class of objects of C is a set.

For that, we have to understand how some limits and colimits work in a functor
category. The general statement is that "limits and colimits in a functor category are
computed pointwise". We prefer to understand concretely the particular cases we're
interested in, but the reader can find the general theorem in [3] (proposition 2.15.1) or
in [33] (theorem 6.2.5).

We begin by a simple observation: the functor C — A which sends every object of
C to the zero-object of A is a zero-object of Fun(C, A). Moreover, if F, G are objects of
Fun(C,A), a natural transformation F — G is a zero-morphism if and only if all its
components F(C) — G(C) are zero-morphisms in A.

Now, let’s deal with kernels. Suppose that ¢ : F — G is a natural transformation
in Fun(C, A). For each C € C, the morphism @¢ : F(C) = G(C) has a kernel ker ¢¢ :
K(C) — F(C). We observe that this assignment is functorial. If f : C — D is a
morphism in C, then the diagram

K(C) X9 F(C) —*< G(C)
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1.5 Functors on abelian categories

is commutative and so the universal property of kernels will induce a morphism
K(C) — K(D) making the diagram commute as long as the morphism

K(C) XS Q)

lF(f)

F(D) 225 G(D)

is zero. But this is evident since the commutativity of the diagram implies that this
morphism is equal to

K(C) XS F(C) —2< G(C)

Moreover, the uniqueness part of the universal property of kernels shows that if
G : D — Eis another morphism in C, then the bigger diagram

commutes. We conclude that C — K(C) defines a functor C —+ A and that K — Fisa
morphism in Fun(C, A) whose composition with ¢ : F — G is zero. Does it satisfy the
universal property of ker ¢? Let ( : Z — F be another natural transformation which
satisfies ¢ o = 0. By the universal property of kernels, there exist unique morphisms
Z(C) — K(C) for every object C of C making the diagram

K(C) X8 £ %; G(C)

e

Z(0)

commute. These morphisms form a natural transformation since, if f : C — D is a
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morphism in C, then the diagram

~
=
by
S

A\

——————e >

(D

N
\®

N
=
/
N
S

commutes since ker @p is a monomorphism. This proves that K — F satisfies the uni-
versal property of ker ¢. Since Fun(C, A) is a preadditive category (with the addition
of morphisms given pointwise), this implies that a morphism ¢ : F = G in Fun(C, A)
is a monomorphism if and only if ker ¢ is the zero-morphism 0 — F and if and only
if it is a monomorphism pointwise.

It should be clear that the same argument shows that cokernels in Fun(C, A) exist
and are computed pointwise. Moreover, a morphism ¢ : F — G in Fun(C,A) is an
epimorphism if and only if coker @ is the zero-morphism G — 0 and if and only if it
is an epimorphism pointwise.

Finally, basically the same arguments show that, if F and G are two objects of
Fun(C, A), the functor F & G defined by

FoeIC)=FOe6C) and  (Foem=("y )

satisfies the universal property of products and coproducts in Fun(C,A), with the
natural injections and projections being given by the respective pointwise injections
and projections.

We’re now ready to prove our desired result.

Proposition 1.5.2 Let C be a small category and A be an abelian category. Then the
category of all functors and natural transformations Fun(C, A) is abelian.

Proof. After all our preliminary work, all there’s left to prove is that every monomor-
phism is the kernel of its cokernel and that every epimorphism is the cokernel of
its kernel. This also follows quickly from our previous discussion: if ¢ : F — G is
a monomorphism then its components ¢ : F(C) — G(C), for every object C of C,
are monic. Since A is abelian, each @ is the kernel of its cokernel. But kernels and
cokernels are computed pointwise and so ¢ is also the kernel of its cokernel. The
same argument shows that every epimorphism is the cokernel of its kernel. O
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1.5 Functors on abelian categories

Weillustrate how to apply the corollary 1.2.2 by proving that the category of additive
functors is also abelian.

Corollary 1.5.3 Let C be a small additive category and A be an abelian category.
Then the full subcategory Add(C,A) of Fun(C,A), composed of additive functors
and natural transformations, is abelian.

Proof. It is clear that the zero-object of Fun(C,A) is additive, and so it is also the

zero-object of Add(C, A). If Fand G are two additive functors, their direct sum acts on
morphisms by

_(F(f) O

(F@G)(f)—( 0 G(f))'

Since the sum of morphisms is represented by the sum of matrices, the additivity of
both F and G implies that of F & G. Finally, we show that, if ¢ : F = G is a morphism
in Add(C,A) and ker ¢ : K — F is its kernel in Fun(C,A), K is an additive functor.
Indeed, if f,g : C — D are two morphisms in C,

ker @p o K(f+ g) = F(f + g) o ker o = (F(f) + F(g)) o ker @ ¢
= F(f) o ker oc + F(g) o ker @ ¢
= ker @p o K(f) + ker ¢p o K(g) = ker op o (K(f) + K(g)),

and so K(f + g) = K(f) + K(g) by the fact that ker ¢ p is a monomorphism. The same
argument shows that the target of coker ¢ is also additive. O

We’ll now delve into the relationship between functors and exact sequences. Unfor-
tunately, being additive does not guarantee that a functor preserves exact sequences.’
For example, consider the exact sequence of abelian groups

Z
27

0 s 7 —2 .7 5

where the map Z — Z is multiplication by two. Upon tensorization by Z/27 we get
the sequence

Z o Z L

00— "1 7

— 0,

which is not exact since the zero-morphism Z/2Z — 7Z/27 is not a monomorphism.
The additive functors that indeed preserve some kind of exact sequences are so special
that they deserve a name.

°Or perhaps that’s a blessing, for this issue is at the heart of homological algebra.
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1 Abelian categories

Definition 1.5.2 — Exact functor. Let F : A — B be an additive functor between abelian
categories. Then F is said to be left exact when it preserves exact sequences of the

form
0 > M > N > P,

right exact when it preserves exact sequences of the form

M > N > P > 0,

and exact when it preserves short exact sequences.

We observe that our discussion right after the definition 1.4.2 implies that an exact
functor preserves exact sequences of any length, not only short exact sequences.

Proposition 1.5.4 Let F : A — B be an additive functor between abelian categories.
The following equivalences hold:

(a) Fisleft exact if and only if it preserves finite limits;
(b) Fis right exact if and only if it preserves finite colimits;

(c) Fisexactif and only if it preserves finite limits and finite colimits.

Proof. By duality, it suffices to prove (a). We observe that a sequence of the form

0 s M —2 s N PP

is exact if and only if ¢ = ker1. This implies right away that if F preserves finite
limits, then it preserves kernels and so it is left exact. For the converse, recall that
finite limits can be built up from binary products, terminal objects and equalizers.
(Proposition 2.8.2 in [3].) Since F is additive, it preserves binary products and zero-
objects. Moreover, if F is left exact, then it preserves kernels. It suffices then to show
that F preserves equalizers. But the equalizer of a pair ¢, : M — N is simply the
kernel of ¢ — 1. The result follows. [

More often than not, what we’ll use to prove that a functor is left or right exact is
the corollary below, which follows from our good old mottos "right adjoints preserve

limits" and its dual "left adjoints preserve colimits".®

Corollary 1.5.5 Let F : A — B be an additive functor between abelian categories. If F
is a right adjoint then it is left exact and if F is a left adjoint then it is right exact.

®We remember that right adjoints preserve limits by the mnemonic RAPL.

38



1.6 Diagram chasing

1.6 Diagram chasing

In the abelian category A-Mod of modules over a ring A, exact sequences have simple
characterizations in terms of elements. Indeed, the sequence of A-modules

M—2sN_Y.p

is exact if and only if P(¢@(m)) = 0 for all m € M and if Pp(n) = 0, for somen € N,
implies the existence of m € M such that n = ¢(m). Using this, proofs involving
exact sequences can usually be done by pointing fingers to a diagram and observing
the fate of some elements. This technique is called diagram chasing.

To illustrate this technique, we prove the following result in two ways; first using
universal properties and then, in A-Mod, using diagram chasing.

Proposition 1.6.1 — Four lemma. Consider the following diagram with exact rows in
an abelian category A:

M] > MZ M3 E— M4

el e

N > N2 > N3 ——— Ny,

~

If 3 and & are monomorphisms and « is an epimorphism, then y is a monomor-
phism. Dually, if & and y are epimorphisms and & is a monomorphism, then 3 is
an epimorphism.

As usual, we prove only the first part of the result, since the second part follows by
duality.

Proof using universal properties. Let p: P — M3 be a morphism such thatyop = 0.
Our goal is to prove that p = 0. Since the diagram commutes, the morphism

p

JP

Mz —— My
s
Ny

is zero and, as 6 is monic, so is P -+ M3z — My. The universal property of kernels
then implies that p factors through the kernel K — M3 of M3 — My, which coincides
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with the image of M, — M3 by exactness.

M, K

We consider the pullback M, xx P and observe that the commutativity of the
diagram implies that the morphism below is zero.

Mz XKP

M,
B
N> N3

By the universal property of kernels, M, xx P — M, — N, factors through the kernel
K" — N, of N, — N3, which coincides with the image of N; — N, by exactness.

Mz XKP

N2

We consider the pullback M xx/ (M, xk P) and observe that, since 3 is a monomor-
phism, the upper square (in black below) commutes.

M] Xk’ (Mz Xk P) — Mz XK P

| |

M, M,
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1.6 Diagram chasing

Remark that both M, — K and M; —+ N; — K’ are epimorphisms. The corollary
1.3.4 then implies that so are the arrows in black below.

M] XK/(MzXKP)HM2XKP—>P

The composition of the arrows above with p is zero, since M; — M, — M3 is. But
the fact that they are epic implies that p = 0, finishing the proof. O

We now prove the same result, when A = A-Mod, using diagram chase. Observe
that, since we're now proving this result for only one abelian category, we can’t use a
duality argument. (The opposite category of A-Mod is rarely a category of modules.)
Nevertheless, we’ll still only prove the first part below, for our last proof took care of
both parts. We encourage the reader to remark that, in the proof below, every step is
the only one possible.

Proof by diagram chasing. Let m be an element of M3 such that y(m) = 0. Our goal
is to prove that m = 0. Observe that m is sent to 0 in N4 by the composition

m

E

0 —— 0.

Since the diagram commutes, m is also sent to 0 by going through the other side of
the square

?

s

0.

But ¢ is injective, so m is in the kernel of the morphism M3 — M,. (That is, our "?"
above is actually zero.) By exactness of the top row, there exists m’ € M, which is
sent to m by M, — M.

m ——
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Since the middle square commutes, n := (3(m’) is in the kernel of N, — Nj3. So, by
exactness of the lower row, there exists n’ € N; whose image through N; — N, isn.

m’ m 0
}5
n' n 0 0

The morphism « is epic, so there exists m” € M; which is sent to n’. This element
is actually sent to m’ via My — M, due to the fact that 3 is monic. We conclude that
m is the image of m” under the composition My — M, — M.

m’” m’ m 0
n’ n 0 0
But this composition is zero, proving the result. H
p p g

By gluing both versions of the four lemma, we obtain the corollary below.

Corollary 1.6.2 — Five lemma. Consider the following diagram with exact rows in an
abelian category A:

M] > Mz > M3 > M4 > M5
L
N, > N, s N3 > Ny > Ns.

If 3 and & are isomorphisms, o is an epimorphism, and ¢ is a monomorphism, then
Y is an isomorphism.

Proof. The first part of the four lemma, applied to the diagram

M1 >Mz >M3—>M4

I

N] > N3 e N4,

yields that v is a monomorphism. Similarly, the second part of the four lemma,
applied to the diagram

)Mg, >M4—>M5

Zﬁ (E N

> N3 > Ny —— N5,
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1.6 Diagram chasing

yields that y is an epimorphism. This concludes the proof. O

The preceding discussion hopefully conveyed that proofs by diagram chasing are
often simpler than their arrow-theoretic counterparts. It would be great if we could
use the same technique even when dealing with abelian categories other than A-Mod.
The theorem below establishes precisely that.

Theorem 1.6.3 — Freyd-Mitchell. Let A be a small abelian category. Then there exists
a fully faithful exact embedding of A into A-Mod for some (not necessarily commu-
tative) ring A.

While all the necessary prerequisites for the (unfortunately long) proof of this result
were already discussed, we prefer to direct the interested reader to the wonderful proof
in [4] and confine ourselves to an explanation of how this result is used in practice.

Let V: A — A-Mod be the functor given by the Freyd-Mitchell theorem. For now, we
define a pseudo-element m of an object M € A to be an element of V(M ). We shall abuse
notation and write m € M for this relation. The action of a morphism ¢ : M — N,
denoted as ¢(m), on a pseudo-element m is given simply by V(¢@)(m). We gather a
few properties of those notions.

Proposition 1.6.4 Let A be a small abelian category. If ¢ : M — N is a morphism in
A, we have that:

(@) ¢ is monic if and only if for all m € M, ¢(m) = 0 implies m = 0;

(b) ¢ is epicif and only if for all n € N, there exists m € M such that ¢(m) =n;

(c) we may construct a morphism ¢ by describing its action of pseudo-elements.
Moreover,

(d) two morphisms @1, @, : M — N are equal if and only if ¢;(m) = @,(m) for
allm € M;

(e) a sequence M % N Y, N is exact if and only if P(@(m)) =0forallm e M
and if P(n) = 0, for some n € N, implies the existence of m € M such that

n=qe(m).

Proof. The item (c) translates the fullness of the functor V in theorem 1.6.3, and the
item (d) translates it’s faithfulness. Since V is exact, it preserves finite limits and
colimits; this gives one direction on the items (a), (b) and (e). The other direction
follows from the fact that a fully faithful functor reflects limits and colimits, which is
clear from their universal properties. O

Finally, we address the elephant in the room: most abelian categories are not small.
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This is not as bad as it seems, and we explain why. Let A be an abelian category and
D be a diagram in A. Consider the sequence

BoCcBiC---CB,C---,

where By is the full subcategory of A generated by D and B,, ,; is the full subcategory
of A generated by the limits and colimits of all finite diagrams in B,,. Then

B:.= O B,
n=0

is a full subcategory of A stable under finite limits and colimits. In particular, B is an
abelian category due to the corollary 1.2.2. If the diagram D is small (which is the
case in basically all applications), so is the abelian category B, and then we can apply
the theorem 1.6.3 in B.

In a nutshell, the Freyd-Mitchell theorem allows us prove basically every result
about exact sequences in abelian categories as if we were in a category of modules.
And we may even use duality arguments!

Henceforth, we’ll prefer arrow-theoretic constructions whenever they aren’t too
troublesome, but we will freely use elements when they simplify or shed light on
some arguments.

We end this section with arguably the most important diagram chase: the snake
lemma. Its statement involves a diagram of the form

My — My > M3 > 0
I
0 > Nj s N, > N3,

whose rows are exact, where we expand the kernels and cokernels of the vertical
morphisms and insert the natural morphisms induced from the universal properties:

Ky -—---- > Kg -----= > Ky
ker o ker 3 kery
M] — Mz > M3 >
o4 B Y
0 > 1 > 2 > N3
coker o coker 3 cokery
Co ——--- + Cpg -——-—> C,.

We’re now in a position to state this important result.
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1.6 Diagram chasing

Theorem 1.6.5 — Snake lemma. Consider the following commutative diagram with
exact rows in an abelian category:

=
~

M, > Mz —— 0
S R
N>

s N3.

We denote by K, Kg and K, the sources of ker «, ker 3 and kery. Similarly, C, Cp
and C, denote the targets of the cokernels thereof. Then, there exists a morphism
6 : K, = C4 making the sequence

Ko > Kg y Ky —— Cq > Cp y Cy

exact. Moreover, if M; — M, is a monomorphism, then so is Ky — Kg, and if
N, — N3 is an epimorphism, then sois Cg — C,.

Before we delve into the proof, we observe that, even though there may be many
morphisms § : K, — C, which satisfy the conclusion above’, there’s a canonical one
that will be the one in consideration whenever we talk about the snake lemma.

We construct the morphism 0 using elements as follows: let m be an element of K,,.
Since ker y is a monomorphism, we can view m naturally as an element of M3. Due to
the fact that M, — M3 is an epimorphism, there exists a lift m’ of m to M,, which we
then map to N, as 3(m’). By the commutativity of the diagram, the image of 3(m’) to
N3 is zero, proving that 3(m’) is in the image of N; — N,. Since the latter is monic,
we denote the element of N; whose image by N; — N, is 3(m’) by the same symbol.
Finally, (m) is the image of 3(m’) in the cokernel of «.

m
kery

!/

m ——— m

B

B(m') —— p(m’)

I coker

o(m)

In order for this morphism to be well-defined, we need to check whether a different
choice for the lift m’ would change the image 5(m). If m” is another choice, then

7If § satisfies the conclusion of the snake lemma, then so does —5.
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m’ —m” is in the kernel of M, — M3 and so in the image of M; — M,. Let m € M,

be one element mapping to m’ — m”. Its image in C is zero, since M; — N; — Cq
is the zero-morphism.

coker «

0

The commutativity of the diagram then implies that 5(m) is independent of the choice
of the lift.

Proof of theorem 1.6.5. ]
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In the previous chapter, we saw that only the most distinguished additive functors
turns out to be exact. Nevertheless, the image of an exact sequence

M—2sN_Y.p

by an additive functor F is still special, for it satisfies F({) oF(¢) = F(o @) = F(0) = 0.
The sequences of objects and morphisms in which the composition of two consecutive
morphisms is zero are called complexes and compose the main topic of the present
chapter. We'll see that there are many contexts in which associating a particular
complex to a mathematical object provides useful information about the aforesaid
object.

2.1 Basic definitions

We begin with the precise definition of a complex.
Definition 2.1.1 — Complex. Let A be a (not necessarily abelian) category. A cochain
complex (M*®, d*) in A is a sequence of objects and morphisms

i—-2 . i—1 . i . i+1
. d_> le] d_> Mt L> ]\/llJr1 d_>

such that d* o d~! = 0 for all i.

In some applications, it is useful for the indices to be descending. In this case, the
indices are usually written as subscripts

d diq

diy2 dit1 i
— M > M, >y My —— - -~

and the corresponding object is said to be a chain complex. Since most of the complexes
that we’ll encounter are cochain complexes, we’ll just call them complexes and denote
them by M*. Of course, we can always set M := M_; and see a chain complex M, as
the cochain complex M~°.

Also important are the ways complexes can interact with each other. For that, we
gather all the complexes in A in a new category C(A).
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Definition 2.1.2 — Category of complexes. Let Abe a category. An objectin the category
of complexes C(A) is a complex in A and a morphism 1°® : M*®* — N* is a commutative
diagram

i—1

Mme

. .odi, .
s MU s M M M

oo e
.

i
. ai . di. .
~—>Nl_] —>N1+]—>-~~

in A. The morphisms d* : M' — M are said to be the differentials of the complex.

Other usual variants of the category C(A) may be concocted by considering com-
plexes which are bounded in some sense. For example, we let C*(A) denote the
full subcategory of C(A) composed of the complexes M* which are bounded below,
i.e., for which M' = 0 for all i < 0. Similarly, we consider the categories C™ (A) of
bounded-above complexes and CP(A) of complexes which are bounded above and
below. A shorthand notation for all these categories is C*(A).

Proposition 2.1.1 Let A be an abelian category. Then the categories of complexes
C*(A) are abelian.

Proof. Due to the corollary 1.2.2, it suffices to prove that C(A) is abelian. Consider
the category Z, which has an object for each integer and a single non-trivial morphism
between each consecutive integers (from the smallest to the biggest). Then C(A) is a
full subcategory of Fun(Z,A), which is abelian by the proposition 1.5.2. Appealing
once again to the corollary 1.2.2, it suffices to see that the category of complexes is
closed under direct sums, kernels and cokernels.

Binary direct sums of complexes form another complex since, for all 1, the diagram

i—1

Mi—1 dye \ Mi Mi+1

it |

Mif1 D Nif1 Mi D Ni s Mi+1 D Ni+1

diye

commutes. Moreover, if * : M®* — N°* is a morphism of complexes, we have a
commutative diagram

Kif1 N Ki N Ki+1

lker P! lker Pt lker Pt

X il .odi. .
Mi-1 MT, ME M M

By the complex condition, K*=' — K! — K'*!' — M is the zero-morphism and,
since ker ™! is a monomorphism, K= — K* — K'! is also already zero, proving
that the category of complexes is closed under kernels. A dual argument shows that
it is closed under cokernels. O
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We now observe some natural functors which involve the category of complexes.
First of all, as it was seen in the proof above, our category A can be embedded in C*(A).
Indeed, the functor  : A — C*(A) which sends an object A of A to the complex

> 0 » 0 > A > 0 > 0 o

~~
degree 0

is fully faithful (it is also exact when A is abelian). Another natural functor on C*(A)
is the shift functor:

C*(A) — C*(A)
M?® — M[n]®,

defined by M[n]* := M™** and d},,. := (—=1)"d}\.". The sign on the differential
doesn’t change the isomorphism class of the complex but simplifies some other equa-
tions. Also, an additive functor between additive categories F : A — B determines a
functor between the categories of complexes

C*(F): C*(A) — C*(B)

given by setting the image of M* to be the complex defined by F(M') and F(d},.).
Whenever there’s no risk of confusion, we’ll denote this functor simply by F.

There’s another, even more interesting, functor defined on the category of complexes
C*(A) when A is abelian. Consider a complex M*. The complex conditiondiod'~! =0
and the universal property of kernels imply that d*~' factors through ker d*:

LA M Mt v 4
\\\J Adi
Ki

But ker d' is a monomorphism and so the universal property of images yields a unique
factorization of im d'~' through ker d':

Iifl

Ydil
di+1

i dt i+1
> MY —— M —_

Adi

The induced morphism I'~! — K! is always a monomorphism (for im d*~' is) and is
epic if and only if the complex is exact at M*. Thus, its cokernel measures the lack of
exactness of the complex at M*.

b=

Ki
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Definition 2.1.3 — Cohomology. Let M* be a complex in an abelian category A. Its i-th
cohomology, denoted H'(M?*), is the target of the cokernel of the induced morphism
['=1 — K% as above.

We affirm that the assignment M*® — H'(M*) defines an additive functor C*(A) — A.
Indeed, let p* : M* — N* be a morphism of complexes. By the universal property of
kernels and cokernels, we have induced morphisms

ker di d}vl coker di

. Me . . . M® i
Kize > M* y M —X Cie
| |
| i i+1 |

P P
. ker d . d . coker d .
i N i Ne | i+1 N® ~i
KN. 7 N 7 N —> CN..

In order for the universal property of cokernels to induce a morphism H'(*®) :
H'(M*) — H'(N*) making the diagram

i—1
i,

A

M
ker di . df

HY (M®) < Kise > M2 M

|
H(*) l lwi lmw‘

. . ker di,. . di. .
HY(N®) K. A y NP — N

- i—1
. Adk.

i—1
IN.

AN

commute, we have to show that the morphism I%;) — K§,. — Ki. — H'(N*) is zero.

Since I{‘\Tf — K&+ — H'(N*) is the zero-morphism, it suffices to construct a morphism
I, — Ix.' which factors Iy, — Ki,. — K&.. This morphism is induced by the
universal property of kernels using the fact that im = ker(coker):

ker d}\z.] coim di~d imdi’d . cokerdi ]

i—1 i—1 ® i1 MR i M® ~i—1
Ko M- — ML, > M ¥ Clre

TR

. ker i) . coim diy! . im di7)! . cokerdid .
— Ne _ Ne 1i— Ne Me —
K]l\l.l — N ! E— I}\]J > N* ? (:]1\1.1.

The left-hand side of the diagram commutes due to the universal property of cokernels
and the fact that coim = coker(ker). The uniqueness of the induced morphism on
cohomology implies right-away that H' preserves the composition of morphisms and
that it is additive.

In A-Mod, the i-th cohomology of a complex is simply given by ker d'/im d*~' and,
for a morphism \* : M* — N* of complexes, the induced morphism on cohomology
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is nothing but
HY(W*) s [m] = [t (m)].

As it will become clear in the next sections, the morphisms of complexes 1* : M* —
N* which induce an isomorphism in cohomology are important and deserve a name.

Definition 2.1.4 — Quasi-isomorphism. A morphism of complexes {* : M* — N*® is
said to be a quasi-isomorphism if, for all i, the induced morphism H*({*) : H'(M*) —
H'(N*) is an isomorphism.

We observe that we can also see cohomology as a functor C*(A) — C*(A), where
the image of a complex M* is a complex H®*(M*) which has H'(M*) as objects and
zero-morphisms as differentials.

An important property of cohomology is that it commutes with exact functors.

Proposition 2.1.2 Let F : A — B be an exact functor between abelian categories and
M* a complex in A. Then H*(F(M*)) = F(H*(M?*)).

Proof. We construct the i-th cohomology group of F(M*). Since F is additive,

(@)

- —— F(MT) fa )

FMY S Fmie )y —— -

is indeed a complex. Due to the fact that F preserves finite limits and finite colimits,
F(im d* ") is the image of F(d"') and F(ker d') is the kernel of F(d*).

/ F(imd*~")
S —— F(M'T) \ F(M)
\

F(I—")

ﬂ FIMH!T) —— ...

/{ker ah)

Moreover, by the uniqueness in the universal property of images, the induced mor-
phism F(I'"") — F(K') coincides with the image of the induced morphism I'~! — K¢
by F. Then, since F preserves finite colimits, the cokernel of F(I'"') — F(K?) is simply
the image of the cokernel of I'"! — K' by F, proving that H'(F(M?*)) = F(H'(M*)). O

F(El)

Since direct sums are limits and colimits at the same time, the direct sum functor
preserves finite limits and finite colimits. The proposition 1.5.4 then implies that it
is exact. As additive functors are precisely those that preserve finite direct sums,
the preceding proposition gives another proof that cohomology defines an additive
functor.

Before we move on, we observe that our definition of the cohomology of a complex
is somewhat asymmetrical. Instead of factoring d'~' through ker d*, we could have
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2 Complexes and cohomology

factorized d' through coker d*~'. Then the universal property of coimages induces a
morphism C*! — I' making the diagram

coinV

C A M L v

coker d&

commute. Dually to our previous situation, this morphism is always an epimorphism
(for coim d* is) and is monic if and only if the complex is exact at M*. Not surprisingly,
the source of its kernel is nothing but H*(M?*).

Ii

Cifl

Proposition 2.1.3 Let M*® be a complex in an abelian category. Then, for every i,
there exists a natural morphism H'(M*®) — C'~! making the diagram

1171 Ii
/ Ndil COV \
—1

> Mt y Mit]

\ Ai oker k /
Ki ci-1
\ //\{

Hi(M®)

Mi

commute and satisfying the universal property of the kernel of C*~' — I

Proof. Let p : K — C* ! be the composition coker d*~' o ker d*. By the first iso-
morphism theorem (theorem 1.2.5), the source of im p and the target of coim p are
isomorphic. Thus, it suffices to show that I'"! — K is its kernel and C*~' — I is its
cokernel.

The composition I'™! — K' — C'~! is zero, for it coincides with coker d*' oim d*~'.
Moreover, if { : Z — K" is another morphism whose composition with p is zero,
then (coker d') o (ker d') o ¢ = 0 and so the universal property of kernels (using
that im d'~' = ker(coker d'~')) induces a morphism Z — I'"! making the diagram
commute. This shows that I'"! — K is the kernel of p. That C*~! — I is its cokernel
follows by duality. O

Beyond satisfying our desire for symmetry, the preceding proposition also gives a
very useful exact sequence linking cohomologies of different degrees for free.
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Corollary 2.1.4 Let M* be a complex in an abelian category. Then, for every i, the
sequence

0 Hi(Mo) Cif1 s Ki+1 y Hi+1(Mo) 0,
where the morphism in the middle is the composition C*~! — I' — Kt is exact.

Proof. We already know that the sequence is exact at H(M®) and at H*"'(M*).
Exactness at the other objects means that the kernel of C*=" — K1 is H(M*®) — C*!
and that its cokernel is K+ — HFT(M?®).

For the first statement, let Z — C'~' be a morphism whose composition with
Ct! — K'' is zero. Since the C'"' — K'! is the composition of C*~' — I' and
I' - K'*', and the latter is a monomorphism, it follows that Z — C'~! — I' is zero.
But then, since H'(M*) — C'! is the kernel of C'~' — I, there’s a unique morphism
Z — H'(M*) making the diagram commute. The other statement follows in the same
way. [

2.2 Exact triangles

One of the main ideas that will motivate our study of homological algebra is the
fact that the cohomology functor is not exact, but that somehow we can correct this
defect. Let’s understand in detail what this means. Consider a short exact sequence
of complexes in an abelian category:

ll).

0 N LS ANV T s N* — 5 0.

We recall that, since kernels and cokernels on the category of complexes are computed
pointwise, this means that all the components

0 et MY N ).

are exact. By the functoriality of H', we get a complex

0 —— HY(L*) —— HYM*) —— H}(N*) —— 0,
which is exact at HY(M*) but need not be at the extremities. The first statement will
emerge as a particular case of our next theorem, but we can see right away that the

cohomology functor need not be exact. Indeed, let L* = ((Z)[—1], M* be the complex
whose only non-zero objects are M! = Z and M° = Z, and N* be the complex whose
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2 Complexes and cohomology

only non-zero objects are N' = Z/27Z and N° = Z. These complexes fit into the
commutative diagram

0 > 0 > 7 > 7 > 0
| =
0 y 7 —25 7 > 7./27, —— 0,

whose rows are exact. Then the complex induced by the functoriality of H° is

0 0 > 0 y 27, > 0,

N2

which is not exact on the right, and the complex induced by H' is

0 > 7. > 0 > 0 > 0,

which is not exact on the left.

Considering the lack of exactness of H?, the next best thing we can hope for is to be
able to measure how far it is from being exact at each side. Surprisingly, the objects
that measure this lack of exactness are the cohomology objects itself shifted in degree.
What follows is perhaps the most useful result in homological algebra.

Theorem 2.2.1 — Long exact sequence in cohomology. Consider the following exact
sequence of complexes in an abelian category:

P

0 s L —2° s M CLNe > 0.

There exist morphisms §" : H(N®) — H"*"'(L*) making the diagram

a long exact sequence. The §" are said to be connecting morphisms.

Proof. First of all, we observe that the snake lemma (theorem 1.6.5) implies that the
top row in the diagram

4] it 41
0 — Kit! —— Kjle — KK

lker diLtl lker d}\j[l lker d}\f.]

. i+1 . i+1 .
0 L1+1 P M1+1 ¥ N1+1 0

. i+2 . i+2 .
0 s LH—Z P MH—Z W s N1+2 s 0
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2.2 Exact triangles

is exact. Similarly, it implies that the bottom row in the diagram

. i-1 . i1 .
0 — 1 @ Mt PN

Jaie i |
. i . Pt .

0 y L[V —2 M > Nt s 0
lcoker d};] lcoker d‘ﬁ.] lcoker d}\r.]

! —— Cyl — G ——0

is exact.
Now, we fit the morphisms C'~' — K'! described in the corollary 2.1.4 into a
commutative diagram

Chl — Cd —— ol —— 0

| | !

it i i+
0 — Kit' —— Kjle —— KW,

whose rows are exact. One more application of the snake lemma (theorem 1.6.5)
provides the desired connecting morphisms. O

As we argued in the proof of the snake lemma (theorem 1.6.5), even though there
may be many morphisms H'(N*) — H'*'(L*) inducing a long exact sequence, there
are distinguished ones which are defined as follows: for a class [n] € H'(N*®), let fi be
an element of M such that p*(fi) = n. Then df,.(fl) is in the image of ¢'*' and we
denote its preimage by the same symbol.

D

Finally, &' is the map which sends [n] to [d},.(fl)]. Whenever we talk about con-
necting morphisms, it should be understood that these are the morphisms under
consideration.

One important property of the connecting morphisms is that they satisfy a certain
naturality condition, which we describe below.
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Corollary 2.2.2 Consider the following commutative diagram of complexes in an
abelian category

~
o

0 > L® s M*® > N°®

L

0 S M’® s N'® > 0,

~

whose rows are exact. Then, for every i, the diagram induced by functoriality and
the connecting morphisms

Hi(N') 5t s Hi+1(Lo)

| |

Hi(N/o) 8t } Hi+](L/o)
commutes.

Proof. Let A be the abelian category in question and consider a category A, the arrow
category, whose objects are morphisms in A and whose morphisms between A — B
and A’ — B’ are commutative diagrams

A—— B

L

Al —— B'.

Since A is nothing but Fun(T, A), where T is a category with two objects and only one
non-trivial morphism between them, the proposition 1.5.2 implies that A is abelian.

A complex in A is nothing but a morphism of complexes in A. Denoting the
morphism L* — L’* in C(A) by L*, and similarly for the other morphisms, we obtain
a short exact sequence

0 s L° y M*® y N® s 0

in C(A). Then the previous theorem yields morphisms & : H{(N®) — Hi*'(L*). Since
kernels and cokernels are computed pointwise in a functor category (due to the proof
of the aforementioned proposition), a morphism &* : H{(N®*) — H**'(L*) is nothing
but a commuting square as desired. O

Due to its somewhat contrived construction, the connecting morphisms doesn’t
seem to arise in the same fashion as the other morphisms, which are induced from
the functoriality of the cohomology functor. This couldn’t be further from the truth.
We would argue that the long exact sequence in cohomology is simply a shadow of
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2.2 Exact triangles

a, perhaps more fundamental, long sequence of complexes. In an ideal world, we
would have a morphism of complexes N* — L[1]* and the long exact sequence in
cohomology would be nothing but the image of the sequence

(11®
¥ @

L —2 Mo 2 Ne > LOJe Mi* —— -

under the cohomology functor. This doesn’t work.! The next best thing would be to
find a complex P*, along with a quasi-isomorphism p*® : P* — N*® making the diagram

HiLe) Y pigve) YL Higpey

| | e
HE(L® Hi(M®) w HE(N®) AN Hi+1(L?)

Hi(7*)
—_—

HY(L[1]*)

) Hi(¢*)

commute. In this way, the long exact sequence in cohomology arises, up to isomor-
phism, as the image of

s L0 —2 s M —s P T 1] > MA]* —— -

under the cohomology functor and connecting morphism &' can be described as
HH(mr*) o HE(p*) 1.

All our hopes and dreams will come true. The reader may recall that there is indeed
a natural complex P* which fits in a short exact sequence

0 sy M® —S s P ™ S L[1]* —— 0.

Itis the direct sum P* = M* @ L[1]*, with its natural injections and projections. We also
have a natural morphism p*® : P* — N* defined as the composition of the projection
M* @ L[1]* — M* with the given morphism * : M* — N°.

Ay, there’s the rub! The natural morphism p® : P* — N*® need not induce an isomor-
phism on cohomology. For example, consider the following short exact sequence of
complexes of abelian groups

0 —— (Z) 25 (Z) —— UZ/2Z) —— 0,

where ( is the embedding of Ab into C(Ab) and ¢* is the multiplication by 2 map. In
this case, the naive direct sum is simply the complex

> 0 >L(Z)L>

(&

degree 0

1For example, consider the exact sequence of complexes we used to prove that the cohomology
functor is not exact. A morphism of complexes N* — L[1]* inducing the connecting morphism
HO(N*) — H'(L*) would correspond to a morphism of abelian groups Z — Z whose restriction to
27 is an isomorphism 2Z — 7. Such a morphism does not exist.
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2 Complexes and cohomology

whose 0-th cohomology is Z, instead of Z/27Z. The problem, of course, is that our
definition of P* carries no information about morphisms involved in the original exact
sequence. If, in the place of the zero-morphism ((Z) — ((Z) above, it was ¢°, no such
problem would arise: the 0-th cohomology would be Z/27Z and all the other degrees
would be zero.

The preceding discussion suggests that it may be useful to consider a complex with
the same objects as M* @ L[1]* but whose i-th differential is given by

die —o')  /di. —o'!
0 diy./) \ 0 —ai')’

As we shall see, it is this object that will solve all our problems.

Definition 2.2.1 — Mapping cone. Let ¢°® : L* — M* be a morphism of complexes in
an additive category. The mapping cone of @*® is the complex MC(¢)* whose objects
are MC(¢)' := M! @ L'*! and whose i-th differential is”

d}\/l' _(pi—H
0 —dii')’

“There are different sign conventions in the literature.

Since the composition of morphisms represented by matrices is given by the mul-
tiplication of the respective matrices, we have that dy;c . © diNfC]((p). is represented

by

dige —@" " (A ') _ (dieodiyd @ odi. —djye o ¢ o
0 —dif’ 0 —di. 0 ditl o di. ’

proving that MC(¢)* is indeed a complex. In an abelian category, the mapping cone
inherits a short exact sequence

0 y M* —" MC(@)* —=— L[1]* —— 0

where the natural injections and projections are still morphisms of complexes, even
with the new differential. Moreover, there’s an induced long sequence of complexes

e[1]°
—_—

L —2 M® — MC(@)* —=— L[1]° MJ* —— -

In order to properly deal with such long sequences of complexes, we introduce
some notation. We denote a long sequence of complexes of the form

) 1]).

y [* —2— M* > N°® » L[1]* ——
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2.2 Exact triangles

as a triangle

LQ
N
N* <1b—' M.)
where the arrow marked by +1 indicates that the morphism shifts the degree by one,
representing the imposing diagram

Li+1
Ni|+1 </ /‘T \ MLH
N ai N
di. Li die
Nt < /T \ Mt
N o ~
g Li-T die
Ni=T ¢ / T > M1,

A morphism of triangles consists of morphisms A®, u°®, and v®, making the diagram

Lo —© o Mo ¥ Ne s L[1]°
l}« lu' lv‘ lm]'
L/o (P_/'> M/o pre N N/o N L/[]]o

commute. Moreover, a triangle is said to be exact if it arises from a long exact
sequence.’

In this notation, the plan we outlined before can be encapsulated as the fact that,
given a short exact sequence of complexes

.LI)O

0 y L* —2" M® >y N* —— 0,

the cohomology functor H*® takes the triangle induced by MC(¢)® and outputs an
exact triangle
H*(L*)

V \H'«p')

H*(MC(@)*) ¢———— H*(M*),

2Some references define an exact triangle to be what we’ll soon call a distinguished triangle.
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which is isomorphic to the triangle arising from the long exact sequence in cohomol-
o8y

AN

H*(L*)
°(

\H°(<P')

) D e me).

H*(N
We now prove this fact.

Proposition 2.2.3 Consider the following exact sequence of complexes in an abelian
category:
P

0 s Lt —2T s M P N s 0.

There exists a quasi-isomorphism p® : MC(¢@)®* — N*® making the diagram

HI-T(L1]*) —— HiM®) 2% Hipmc (o)) Y Hige)

H H 1o H

HYLe) 0 Higvee) 200 piNe) — 35 Hit (L)
commute.

Proof. As before, p*® is simply the composition of the projection MC(¢)®* — M* with
the given morphism {* : M* — N°. This morphism makes the middle square
commute due to the fact that the composition M* — MC(¢)®* — M?* is the identity
(theorem 1.1.9) and so the diagram below

M* —“ 5 MC(@)®
|

M | o
v
Me — N

commutes. The commutativity of the square on the right means that the composition
dtoHY(p*) sends [(m,1)] € HY(MC(@)®)to[l] € H*'(L*). Now, Hi(p*) sends [(m, 1)] to
[\!(m)] and &' sends this element to [l'], where 1’ is some element satisfying ¢ "' (1) =
djse (m). But Litself is one such element, due to the fact that (m, 1) € ker dj; (.-

All that remains is to prove that H'(p®) is an isomorphism for all i. But, upon
extending our diagram one square to the right, this follows directly from the five
lemma (proposition 1.6.2). O

Beyond being conceptually useful, the last proposition also provides us with a
criterion of a morphism of complexes to be a quasi-isomorphism.

60



2.2 Exact triangles

Corollary 2.2.4 Let @* : L* — M*® be a morphism of complexes. Then ¢°® is a
quasi-isomorphism if and only if its mapping cone MC(¢)* is an exact complex.

Proof. If MC(¢)* is an exact complex, then its cohomology is zero and so the long
exact sequence in cohomology

HU T (MC()*) —— HY(L*) % Hi(M*) —— HY(MC(9)*)
=0 =0

implies that ¢*® is a quasi-isomorphism. Conversely, if ¢* is a quasi-isomorphism, the
long exact sequence in cohomology

) Hi(p*) B

Hi(L® HI(M®) —% HY(MC()*) —E— Hi+1 (L) ) i (me)

implies that ker ¢ = idyyi(pe), that im & = ker $ and that im 3 is the zero-morphism.
The first and the last pieces of information mean thatboth «cand 3 are zero-morphisms,
and im & = ker 3 implies that 3 is a monomorphism. But then ker 3 is both the
identity on H'(MC(¢)*) and the zero-morphism 0 — H*(MC(¢)*®). It follows that
HY(MC(g)*) = 0. O

This corollary allows us to prove that quasi-isomorphisms are preserved by exact
functors.

Corollary 2.2.5 Let F : A — B be an exact functor between abelian categories and
@°® : L* — M* be a morphism of complexes in A. If ¢° is a quasi-isomorphism, then
sois F(@*®).

Proof. Due to the last corollary, it suffices to prove that MC(F(¢*®)) = F(MC(¢*®)) is
an exact complex. But the proposition 2.1.2 implies that
H* (F(MC(*®))) = F(H*(MC(¢®))) =0,

~—_——
=0

establishing the result. O

One aspect of mapping cone of a morphism ¢* : L* — M* that we have not yet
addressed is the fact that, even though MC(¢)* is always a complex, the long sequence
induced

e[1]°
—_—

y L0 —275 M* —“ MC(@)* —=— L[1]° M]* —— ...

need not be. This means that our triangles aren’t elements of C(C(A)). Indeed, the

composition
L* — M* — MC(p)*
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sends 1 € L' to (¢*(1),0) € M* & L', which isn’t always zero unless @' is the zero
morphism. Moreover, the composition

MC(e@)®* — L[1]* — M[1]*

sends (m,1) € M@ L1 to @1 (1) € M1, which also isn’t always zero unless @**!
is the zero morphism.

Notwithstanding the fact that these compositions are usually not zero, they do
indeed map to the zero-morphism in cohomology. And they do so for a good reason,
which will be the main focus of the next section.

2.3 The homotopic category

The main line of attack in homological algebra to understanding some mathematical
object consists of associating some interesting complex to this object and then taking
its cohomology. For example, given a smooth manifold M, we associate to it a complex

0 d 1 d 2 d
0 —— QY yQl, —4 02 4,

where Q}, is the R-vector space of differential i-forms on M and d is the exterior
derivative. The i-th cohomology of this complex Hiy (M) is said to be the de Rham
cohomology of M and is an important invariant of a manifold. Of a more algebraic
nature are the modules Tor{*(M, N) which are computed in the following way: we
find an exact sequence of A-modules

>P3 >P2 >P1 >P0 > M >O,

where each P; is a projective module, we tensor by N and take the —i-th cohomology
of the complex

'—>P3®AN —>P2®AN —>P1 ®AN —>P0®AN.

(All the omitted objects are supposed to be zero.) Surprisingly, the final result is
independent of the choice of the projective modules P;. We could even take the P; to
be flat modules and the result wouldn’t change.

But we can do better! Instead of taking the cohomology of the associated complexes,
we can consider them "up to quasi-isomorphism". In this way we retain all the
cohomological information while being able to use the tools available for dealing
with complexes. Somewhat more formally, we would like to find a category D(A),
with the same objects as C(A) but where all the quasi-isomorphisms become genuine
isomorphisms.
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This category, along with its bounded variants D*(A) for * = +, —, b, indeed exists®
and it’s called the derived category of A. This category satisfies a universal property
alike that of the localization of modules: it is endowed with an additive functor
C(A) — D(A) such that quasi-isomorphisms in C(A) are mapped to isomorphisms in
D(A) and which is initial with respect to this property.

It is the derived category that is the natural place to study homological algebra.
Nevertheless, there is an intermediate category, the homotopic category, that will not
only simplify the description of the morphisms in the derived category but also furnish
a substitute thereof in important cases. We begin its study now.

Definition 2.3.1 — Homotopy. Let ¢°®,1* : L* — M* be two morphisms of complexes
in an additive category. A homotopy between @® and \* is a collection of morphisms
ht: L' — M™ such that

ll)l_(P-L:dll\ZJ Ohi+hi+1 Odi.

for all i. If there exists a homotopy between ¢* and 1*, we say that they are
homotopic, and we denote it by @*® ~ 1°.

We observe that this is indeed an equivalence relation: reflexivity and symmetry
are immediate, and it suffices to sum the homotopies to prove that it is transitive. We
also emphasize that the h! need not form a morphism of complexes L* — M[—-1]°. In
particular, the diagram

i
di. L1+1

dl 1
h1+l
.lbl 1 .lbt 1+1 ll)1+1
’ d1 1 ’

. s Ml 1 N MH—I

diLe

need not commute. The next proposition explains how homotopy interacts with the
additive structure of C(A). The reader may remember its first part as saying that
"morphisms homotopic to zero form an ideal".

Proposition 2.3.1 Let ¢%, @5 : L* — M* and {},{5 : M* — N°® be morphisms of
complexes in an additive category. The following holds.

(@) If o7 ~0and @5 ~ 0, then @] + @5 ~0, o x®* ~0and B°* o @] ~ 0 whenever
those compositions exist;

(b) if 7 ~ ¢35 and ¥} ~ Y3, then Y] o 9§ ~ Y3 o 3.

Proof. If 3 ~ 0 and ¢@$ ~ 0, then there exists collections of morphisms h', k' : L' —

3Up to some set-theoretic subtleties, which will be discussed in the next chapter.
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M1 such that
ey =dloht +hit T odl. and ¢} =dJ ok + k" odi..

Summing these equations, we see that the morphisms h' + k' form a homotopy
between ¢ + @3 and zero. By composing on the left with «*® : P* — L* we get that

plooat =dilohtoat +ht o dl, oot

=di)o(htoal)+ (h" oo di.,

proving that h' o «* is a homotopy between ¢$ o «® and 0. The same argument proves
that 3° o @} ~ 0. This establishes (a).
Now, (b) follows from (a) by noticing that

0~PTo (o] —@3) =Vioe] —bjop;
0~ (W7 =) o] =1Toe] =30 @]

and subtracting the two equations. O

There’s an important definition which encodes the notion of "isomorphism up to
homotopy".

Definition 2.3.2 — Homotopy equivalence. A morphism of complexes ¢*® : L* — M* is
said to be a homotopy equivalence if there exists a morphism 1 : M* — L*® such that
@°® oP*® ~idpme and P® o @* ~id;.. If there exists a homotopy equivalence between
two complexes, they are said to be homotopy equivalent.

Once again, this defines an equivalence relation: reflexivity and symmetry are clear
and transitivity follows from the preceding proposition. We observe that, from this
point of view, the notion of homotopy equivalence is better behaved then that of quasi-
isomorphism as the latter doesn’t define an equivalence relation between complexes.
Indeed, in C(Ab) the morphism of complexes

0 0
0 0
is a quasi-isomorphism which does not possess an inverse (as there are no non-trivial
morphisms Z/27 — 7), proving that quasi-isomorphism is not a symmetric relation.

Even though the above is only one of the multiple reasons why homotopy equiv-
alence is a more tractable notion than that of quasi-isomorphisms, it would all be

for nothing if homotopy weren'’t a stepping stone to the derived category. The next
proposition begins to describe how our plan works.

-2

\ \ \
7 4 7

~

> 7
|

y 1.)27. :

o +— N

\
4

> 3> e e
7 7
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2.3 The homotopic category

Proposition 2.3.2 Let ¢*,{* : L* — M?* be homotopic morphisms of complexes in
an abelian category. Then ¢* and 1{* induce the same morphism on cohomology.

Proof. We prove that {* — ¢*® induces the zero-morphism in cohomology, i.e., that it
sends elements of ker d}. to elements of im d},. . But this is clear since

YY) — @'(1) = dj,d (hH(V) + h'* 1 (df. (1)
and the last term vanishes whenever 1 € ker dt.. ]

This is why the long sequence induced by the mapping cone of a morphism "has a
good reason" to become a complex in cohomology: the composition of two consecutive
morphisms is not necessarily zero, but they are homotopic to zero. This proposition, in
the form of the corollary below, also describes why the line of attack described in the
beginning of this section works: often we’ll associate non-isomorphic complexes to a
mathematical object, but they’ll turn out to be homotopy equivalent.

Corollary 2.3.3 Let L* and M*® be homotopy equivalent complexes in an abelian
category. Then H*(L®) = H*(M®).

Proof. Due to the preceding proposition, the morphisms which define a homotopy
equivalence between L* and M*® induce inverse morphisms in cohomology. O

There is another aspect where homotopy equivalences are simpler than quasi-
isomorphisms: while the latter is only* preserved by an exact functor (corollary
2.2.5), the former is preserved by arbitrary additive functors.

Proposition 2.3.4 Let F : A — B be an additive functor between additive categories,
and let @°®,{* : L* - M* be homotopic morphisms in C(A). Then F(¢*) and F(*)
are homotopic in C(B). Moreover, if L* and M* are homotopy equivalent in C(A),
then F(L*) and F(M*) are homotopy equivalent in C(B).

Proof. The second assertion follows immediately from the first. As for the first,
observe that if h is a homotopy between @* and 1, then

F(W') — F(e') = F(d0 ) o F(h') + F(h** 1) o F(d}.)
= dfme © F(WY) + F(R1) o di ).

This proves that the morphisms F(h') define a homotopy between F(¢®) and F(1*). [

*Indeed, if F is not exact, there exists a three-term exact sequence whose image is not exact. But a
three-term complex is exact if and only if it is quasi-isomorphic to zero.
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2 Complexes and cohomology

This validates our strategy: beginning with a mathematical object to which we
associate some interesting complex, we apply some additive functor and then see the
result in the derived category. The proposition 2.3.4 and the corollary 2.3.3 shows that
any other homotopy equivalent complex would yield the same result at the end.

By identifying homotopic morphisms, we obtain the homotopic category.

Definition 2.3.3 — Homotopic category. Let A be an additive category. The homotopic
category K(A) is the category whose objects are complexes in A and whose mor-
phisms are homotopy classes of morphisms of complexes. We define likewise
bounded variants K*(A), for x = 4+, —, b, thereof.

The part (b) of proposition 2.3.1 implies that indeed K*(A) satisfy the axioms of a
category, and the part (a) shows that they are moreover preadditive. Since they have a
zero-object and binary products, they are even additive. They aren’t, through, almost
never abelian even if A is. Indeed, we’ll soon see that if K*(A) is abelian then every
short exact sequence in A splits.

We observe that if F : A — B is a functor between additive categories, then we have
a natural functor F : K(A) — K(B) by the proposition 2.3.4 and the universal property
of quotients.

The reader may recall that our long-term goal is to understand the derived category,
which is constructed from C(A) by inverting all the quasi-isomorphisms. In defining
the homotopic category, we have determined a functor

C(A) — K(A)

which sends every object to itself and every morphism to its homotopy class. This
functor sends every homotopy equivalence to an isomorphism and, as the proposition
below shows, is a stepping stone to the derived category.

Proposition 2.3.5 Let F : C*(A) — D be an additive functor such that F(¢®) is an
isomorphism whenever @* is a quasi-isomorphism. Then there exists a unique
additive functor K*(A) — D making the diagram

commute.

Proof. We need to show that if ¢*,\{*: L* — M?* are homotopic morphisms in C*(A),
then F(¢®) = F(y*). Since F is additive, we may assume * = 0. Moreover, as —idj.
is a quasi-isomorphism, the corollary 2.2.4 implies that it suffices to prove that ¢*
factors through MC(—1id;.)®.

66



2.4 The triangulated structure

We already possess the natural injection L* — MC(—id;.)® so we only have to define
a morphism of complexes 7t* : MC(—id;.)* — M* making the diagram

L*— M

(.

MC(— ld]_-

commute. With that in mind, consider a homotopy h' : L' — M'~! between ¢* and
the zero-morphism. We then define our desired morphism 7t : L' @ L't — M' as
(@' hit1). Ttis clear that this makes the diagram above commute. It being a morphism
of complexes means that

i—1 . )
(d;\ﬂ 0@t d}\ZJ ohi) — ((pi hi+1) (dL° ldL; )
0 —d.

_ <(pi odis! @i—hitlo dlL)

is verified for all i. The first equation holds due to the fact that ¢® : [* — M*®is a
morphism of complexes, and the second holds as the h' define a homotopy between
@* and zero. This completes the proof. O

Since the cohomology functors H' : C*(A) — A send quasi-isomorphisms to bona
fide isomorphisms, they descend to well-defined functors K*(A) — A which will still
be denoted by H'. In particular, it makes sense to ask whether a morphism in K*(A) is
a quasi-isomorphism or not, and we can construct the derived category by inverting
the quasi-isomorphisms in the homotopic category. This will turn out to be simpler than
going straight from C*(A).

2.4 The triangulated structure

As hinted before, even if A is an abelian category, the homotopic category K*(A) need
not be. So, in order to be able to do homological algebra, we need some sort of
substitute in K*(A) for short exact sequences. It turns out that triangles behave even
better in K*(A) than they do in C*(A).

The shift functor [n] : C*(A) — C*(A) preserves homotopies and so descends to a
functor K*(A) — K*(A) denoted by the same symbol. As before, a triangle in K*(A)

A

N® —— M.,
T
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or even

L* 2 M - N — L1,
is a shorthand for a long sequence of the form

LT M Y N s T 2 M

where the morphisms involved are now those of K*(A). Similarly, a morphism of
triangles consists of morphisms A, [, and ¥ in K*(A), making the diagram

[+ —® s Me — %, Ne y L[1]°

bbb

L’® i) M'® ¥ N’® N L/[1].

N2

commute. As in C*(A), the triangles arising from mapping cones have a prominent
role.
Definition 2.4.1 — Distinguished triangles. A trianglein K*(A) is said to be distinguished
if it is isomorphic to some triangle of the form

SN

MC(@)® «—— M*
for a morphism ¢*: L* — M*®in C*(A).

As a first sign that triangles work better in K*(A) than they do in C*(A), we observe
that the identity morphism always defines a distinguished triangle in K*(A). This
means that even though the mapping cone of the identity morphism is not zero, it is
homotopy equivalent to zero.

Lemma 2.4.1 Let M*® be a complex in an additive category A. Then the triangle

Mo
—+ 1dpqe
VAN

0 —— M*

is distinguished.

Proof. Consider the collection of morphisms h! : M* & M1 — M1 & M* given by

the matrices
0 0
- ldM1 0 )
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2.4 The triangulated structure

The composition dy;d(q .. © W' +h ! 0 dijg . ). i Tepresented by the matrix

dyy! —idme 0 0\ 0 0\ (dipe —idpmin
0 —di. /) \—idpe O —idpisr O 0 —di! )’

which is nothing but the identity of MC(idm- ). It follows that the identity morphism
on MC(idme)® is homotopic to zero, and so the natural morphism 0 — MC(idp.)*® is
an isomorphism in K*(A). ]

Another useful property of distinguished triangles in K*(A) is that they remain
distinguished upon rotation. We observe that, while the proof is basically only the
definition of a homotopy equivalence, there are a lot of things that need to be verified,
and we won't shy away.

Lemma 2.4.2 Let A be an additive category. Consider the following triangles in

VAT

T L 1* ¢———— N-.

Then one of the triangles is distinguished if and only if the other is.

Proof. We first suppose that the triangle on the left is of the form

/\

MC(@)® +—— M.

Since the mapping cone of 1* : M* — MC(¢)* is naturally endowed with morphisms
MC(¢)* — MC(1)* and MC(1)* — M[1]*, it suffices to prove the existence of a homo-
topy equivalence L[1]* — MC(1)* making the diagram

M —" s MC(@)* — 1117* =% mppe

|
I
+

M®* —— MC(¢p)®* —— MC(1)* —— M][1]*

commute for the triangle on the right to be distinguished. We define a morphism

Li+1 - Mi o) Li+1 D Mi—H by
0
id]_i+l .
_(pi+1
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Also, a morphism M' @ L' @ M1 — L' is given by projecting onto the middle
coordinate. The composition L'*! — M @ L1 @ MU — L1 i
0
(O idLi+1 O) idLi+1 — id[_i+1

i+1
—¢

and the composition M' @ L' ¢ M1 — L1 5 Mg L1 @ MM,

0 0 0 0
id[_i+l (O id]_i+l 0) — 0 id[_i-H 0 y
_(pi+1 0 _(pi+1 0

is homotopic to the identity via the homotopy h : M'a L TeMHT - M- TalLieoM?
given by

Indeed, the morphism dj;(\,,. o h* + h**' o d;, . is represented by

dir —@' —idw 0 00 0 0 0\ [diye —¢"" —idyin
0 —di. 0 0 00|+ 0o 00 0 —dif! 0
0 0 —di,. idpe 0 0 idpisn 00 0 0 —dir!

—idp 0 0 0 0 0 —idpe O 0
= o oo|+| o 0 0 = o 0 0 :
—di. 0 0 die —@ " —idpe 00— —idyuin

This proves that we have our desired homotopy equivalence. The square on the right
commutes (even in C*(A)) by the very definition of the morphism L[1]* — MC(t)*. As
for the one in the middle, we observe that the difference between the two morphisms

MC(@)t — MC(1)tis
idys 0
o o0 |,
0 (pi+1

which is homotopic to zero via the homotopy h : M & L' — M7 ¢ Lt @ M given

by
0 0
—idps O
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2.4 The triangulated structure

Indeed, the morphism dy;(!,,. o h* +h™*' o d (). is represented by
diy @' —idw 0 0 0 O\ g i
0 —di. 0 o o]+ o o ( v —di“)
0 0 —di./) \“idy 0 Cidpp 0 L
= 0 0 + 0 0 - 0 0 )
d%\/l‘ 0 _d}vl. (pi+1 0 (pi+1

which is equal to the difference calculated above. This completes the proof that the
triangle on the right is distinguished if the left one is. For the converse, we observe that

by applying what we just proved to the triangle on the right, supposed distinguished,
five times, we arrive at the triangle

which is distinguished if and only if the triangle on the left is. O

The next result shows that the mapping cone "almost" defines a functor from the
category of morphisms (as seen in the proof of corollary 2.2.2) in K*(A) to K*(A) itself.

Lemma 2.4.3 Consider the following commutative diagram in K*(A) whose rows are
distinguished triangles:

—
)
i)

<
.
<]

> N° > L[1]*

<

L’® l’) M'® s N/® N L/[1]'

4

It exists a (not necessarily unique) morphism v : N* — N’® making the diagram

L~ Mo~ N s L[1]®
lx lu v lim
L’ L M'® P s N’® N L/[]]o

commute. That is, defining a morphism of triangles.

71



2 Complexes and cohomology

Proof. By composing with some isomorphisms, if necessary, we may assume that our
original diagram is of the form

[* —2 5 M* > MC(@)* —— L[1]°

Foo

L’s —© 5 M’ » MC(@')* —— L[1]°.

=

Since the square on the left commutes in K*(A), let h' : L' — M’*"! be a collection of
morphisms satisfying

uio (pi_ (p/io)\i — di’,\zl Ohi+hi+1 o di.

for all i. We then define our desired morphism vt : M' @ L' — M/* @ L as

Hi _hi+1
(0 )\i+1 ) °

o - : i,4-1 _ gil i1 )
This is indeed a morphism of complexes since v o dy; ) — dyio(pr)e © V- IS TEpIE

sented by
ui _hi+1 dII\Z'] _(pi B dlI\ZJ _(p/i }.Lii] _hi
0 Al 0 —di. 0 —di.)J\ 0o A
B ui o dLI\ZJ _ui o (Pi + hit! o d}_. B le\ZJ o Hif1 _dlI\ZJ ohi — (p/i o Al
Lo AT o i 0 —di, oAl ’

which is nothing but the zero matrix. This morphism makes the square on the middle
commute due to the fact that

ui _hi+1 idMi B ui
0 AU 0 ) \o
is equal to the composition of u' : M* — M'" with the natural injection M'* —

M't @ L', Similarly, the square on the right commutes as

ut —hi+

(O id]_/i+1) (O }\iJr] ) - (0 }\i_'_])

coincides with the composition of the natural projection M' & L'*! — L' with
}\i+1 . Li—H N L/i_H. ]

For an example of the lack of uniqueness, let v : M* @& L[1]* — M* & L[1]*® be the

morphism defined by
(idM. 0] )
O id]_[1 I )
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2.4 The triangulated structure

where @* is any morphism L[1]* — M®*. This morphism makes the diagram, whose
rows are distinguished triangles,

L*—25 M s M* & L[1]* —— L[1]
| [+ H
[1]

[*—9% 4 Me s M@ L[1]° —— L

commute. This lack of uniqueness was the main motivation behind Grothendieck’s
unpublished 1991 manuscript Les Dérivateurs, which has almost 2000 pages.

Somewhat surprisingly, the lemmata that precedes amounts to essentially all the
information needed to do homological algebra in K*(A). In our context, this was
first formalized in Jean-Louis Verdier's 1967 thesis as the notion of triangulated category,
which we now present.

We begin with an additive category K endowed with an additive isomorphism of
categories® T : K — K modeling the shift functor in K*(A). As before, a triangle in K is
a diagram of the form

L2 MY N "5 T(L),

and a morphism of triangles is simply a commutative diagram

L > M > N > T(L)
L N A L
L’ > M/ > N’ > T(L').

We also specify a set of distinguished triangles that should satisfy the axioms below.®

(TR1) (a) Every triangle that is isomorphic to a distinguished triangle is also distin-
b/ & p g &
guished.

(b) For every morphism ¢ : L = M in K there is a distinguished triangle

is distinguished.

°In some texts the functor T is only required to be an equivalence of categories, instead of a genuine
isomorphism. The resulting theory is more complicated as it is 2-categorical.
®Actually TR3 and half of TR2 follow from the rest of the axioms. The interested reader can check

[36].

73



2 Complexes and cohomology

(TR2) A triangle
L2 M

¥

M y N —25 T(L) —% T(M)

is distinguished.
(TR3) Given a commutative diagram in K

L > M > N > T(L)

b

L' — M/ > N > T(L'),
whose rows are distinguished triangles, there’s a morphism v : N — N’ making
the diagram

L > M > N > T(L)

L

L/ —— M’ > N/ > T(L')
commute.

(TR4) Suppose we are given these three distinguished triangles:

L2+ M > P » T(L),

M P

> N > R > T(M),

IERALNG N y Q s T(L).
Then there exists a distinguished triangle

P > Q » R > T(P)

making the diagram

Yo - —~
L~ N /\7 R T(P)
AV VG
M Q T(M)
NN
p T(L)
\/

commute.
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2.4 The triangulated structure

The object we're left with is a triangulated category.

Definition 2.4.2 — Triangulated category. A triangulated category is an additive category
K, endowed with an additive automorphism T : K — K and a set of distinguished
triangles satisfying the axioms TR1 to TR4 above.

By now, the reader probably wonders what is the axiom TR4 for. We affirm that
it is a sort of palliative solution to the lack of uniqueness in the induced morphism
of axiom TR3. Indeed, for every morphism ¢ : L — M, the axiom TR1(b) gives an
abstract mapping cone P defining a distinguished triangle

L2+ M >y P > T(L).

Similarly, this axiom gives an abstract mapping cone R to a morphism { : M — N
and an abstract mapping cone Q to the composition P o ¢ : L — N. Naturally, we
wonder how Q relates to P and R. The axiom TR4 affirms simply that they fit into a
distinguished triangle

P > Q » R » T(P).

We leave a study of triangulated categories for the next section and end this one by
proving that indeed K*(A) are triangulated categories. Once again, this isn’t difficult
at all, but there are a myriad of things that need to be verified.

Theorem 2.4.4 Let A be an additive category. Then the homotopic categories K*(A)
are triangulated.

Proof. After our preliminary work, the only axiom that remains to be proven is the
last one. For that we may suppose P* = MC(¢)®, R®* = MC(1)* and Q* = MC(pop)°.
We define morphisms o' : P* — Q' and B*: Q" — Rt as

1.1)i 0 idNi O
(o idLm) and (o et )’

respectively. The «' define a morphism of complexes since o' o dj." — di.' o ot is
represented by

u)i 0 le\Z'] _(pi B d%\,_.] —11)iO(Pi wi—] 0
0 idpin 0 —di. 0 —di. 0 idgs

_ wiodil\z.l —ll)io(pi B d]i\'—.101bif1 —Ibio(pi _ 0 0
0 —di. 0 —di. 00/
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Similarly, the B! define a morphism of complexes since B* o di;.' — di.' o B*1 is
represented by

idye O di' —bloel)  /di! 0t [idnir 0
0 oif! 0 —dt. 0 —di,. 0 @t
B d}\]_.1 _.q)i o (pi B le—.l _lbi o (pi B 0 0
- 0 —@'lodi, 0 —di.op')/ \0 0/
We also define a morphism vy* : R®* — P[1]* as the composition R* — M[1]* — P[1]°.

We must now verify that

pe =, Qr B R X plI.

is a distinguished triangle and that those morphisms fit into the commutative diagram
of the axiom TR4. For clarity, we number the relevant parts of this diagram and rewrite
it here.

II).O(P. Y

/\/\/\

L\/\/\ T
\/\/

\_/

The triangles (1) and (6) commute by the very definition of the morphisms involved.
The square (2) commutes since

ldN1 i Ll)i O ldM1
(5 w=(5 ) (0

The triangle (3) commutes since

s IR idyt | [idne
0 (pi+l 0 - 0 :

The triangle (4) commutes since

(O id[_i+1) (d()) ) O ) — (O id]_i+1) .

ld]_iﬂ
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2.4 The triangulated structure

Finally, the square (5) commutes since

, T INTY . .
(0 ldMi+1) (1(])\] (piJr]) =@ +1 (O ld]_i-H) .

In order to show that the triangle we defined is distinguished we’ll define morphisms
p® : MC()®* — R® and 0°® : R®* = MC(«x)* determining an isomorphism of triangles

B.

> R® LA

pe > Q°
el
*— Q° MC(«)

P.

[1]°
|
* —— P[1]

The morphisms p* : N'@ L' @ M ¢ 112 - N'@o M ! and ot : Nt p MM —
Nt LH! @ M1 @ L2 are defined as

idNi 0
idye O 0 0 0 0
(0 (pi+1 idMi+1 O) and 0 idMi+1
0 0

respectively. They define morphisms of complexes since p**' o dj;(,)» — dge © p* is
represented by

d]i\l' _lbi—H o (pi+1 _ll)i—H 0

idyien 0 0 0 0 —di! 0  —idpie
0 @2 idpisz O 0 0 —di ett?
0 0 0 dii?

(. =TT fidne 0 0o 0\
0 —ditl 0 " idpia 0)
(d}\]. _lbi+1o(pi+1 _lbi+1 O) <le' _Ibi+1o(pi+1 _.l_l)i+1 O)

0 —e@*2odil’ —diil 0 0 —difloeit! —ditl 0
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and 0" o dg. — d}jj¢(o)e © 0" is represented by

idNi+1 0
0 0 di. —pit!
0 idpie ( 0 —d}\ﬁ) B
0 0
d]i\,. _Il)i—H o (pi—H —II)H_] 0 idNi 0
0 —dpt! 0  —idpee 0 o | _
0 0 —di tt? 0 idpin |
0 0 0 dii? 0 0
d}\l‘ _Ibi+1 d}\P _1_|)i+1
0 0 0 0
o —ayl| | o —ai
0 0 0 0

In both cases the result is the zero matrix. We now affirm that the morphisms p*® and
0°® define a homotopy equivalence. The composition p*® o 0° is equal to the identity
morphism on R*® as

idye O

idye 0 0 0 0 0 | fidne o0

< 0 (pi+] idMi+1 O) 0 idMiJrT _< 0 idMi+1>)
0 0

and the morphism o* o p* — idyc(«)e, represented by

idge O idye O 0 0
0 0 idye O 0 0 0 idps 0 0
0 idpgss (o e idyn o)_ 0 0 idyr O
0 0 0 0 0 idpie
o 0 0 0
|0 —idpe 00
10 (pi+1 0 0 )
0 0 0 —idpue

is homotopic to zero via the homotopy h* : N* & L' ' e M T @ L2 5 N T o Ll g
M' & L' given by the matrix

0 0 00
0 0 00
0 0 00
0 idir 0 0
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2.5 Triangulated categories

Indeed, the composition dy; .. © h* + h**! o d} ., ). is represented by the matrix

i —plogt —t 0 0 0 00
0 —di, 0 —idpa [0 0 0 0
0 0 —di,. ! 0 0 00
0 0 0 ait’ 0 idjin 0 0
0 0 0 0 d]i\,. _.Ll)i+1 o (pi+1 _¢i+1 0
N 0O 0 00 0 —di! 0 —idpe | _
0O 0 00 0 0 —dir]  @t?
0 idjiz 0 0 0 0 0 aii?
0 0 0 0 0 0 0 0 0 0 0 0
0 —idpsr 0 0 0 0 0 0 0 —idga O 0
0 o o0o0|Tlo o o o |Tlo ¢ o o |
0 dif' 0 0 0 —dif' 0 —idpue 0 0 0 —idpiz

which coincides with the one representing ¢*® o p® — idyic(«)e. It remains only to
show that p® defines a morphism of triangles. That is, that the associated diagram

commutes. The composition of the natural injection Q®* — MC(«x)® with p*® is given
by

idye 0

idyi 0 0 O\| 0 idpw | (fidy O

(o O idpygn o) 0o 0 _<o <pi+‘)’
0o 0

which is nothing but B*. Since ¢*® is the inverse of p® in K*(A), it suffices to show that
the composition of 0® with the natural projection MC(«)* — P[1]* is y*. This holds
since

idNi O
0 0 idpisn O 0 0 (0 idpin
O 0 O id]_i+2 O idMi+1 N O O ’
0 0
which is equal to y'. The proof is at long last over. O

2.5 Triangulated categories

After proving that the homotopic categories are triangulated in the last section, we
now delve into the world of triangulated categories. The formal results we’ll obtain
will not only be valid and useful for the homotopic categories, but also for the derived
category in the next chapter.

We begin by understanding what are the natural functors between triangulated
categories, preserving their extra structure.
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Definition 2.5.1 — Triangulated functor. Let (K, T) and (K, T’) be triangulated cate-
gories. A triangulated functor from K to K’ is an additive functor F : K — K, together
with a natural isomorphism T: Fo T — T’ o F, such that for every distinguished
triangle

in K, the triangle

Flo) F()
— —

F(L) F(M) FIN) —0 7 (L))

is distinguished in K'.

Whenever we say that two triangulated categories are equivalent, it is to be under-
stood that the functor defining the equivalence of categories is triangulated. Also, if
F: A — Bis an additive functor between additive categories, then the induced functor
F : K(A) — K(B) is triangulated. Indeed, an additive functor commutes both with
mapping cones and with the shift functor.

Recall that, given a morphism ¢ : L — M in a triangulated category K, the axiom
TR1 gives a distinguished triangle

As in the homotopy category, we say that N is the cone of ¢. We'll soon see that it is
unique up to isomorphism. For now, this will allow us to define the natural notion of
a triangulated (full) subcategory.

Definition 2.5.2 — Triangulated subcategory. Let (K, T) be a triangulated category. A
triangulated subcategory of K is a full additive subcategory C C K, which is closed
under cones and under the action of T. That is, the cone of a morphism in Cisin C
and T(L) € C whenever L € C.

Surely, if C is a triangulated subcategory of (K, T), the restriction of T to C and the
collection of distinguished triangles in K whose objects are in C gives a structure of
triangulated category to C. Moreover, the inclusion functor C — K is triangulated.

As we observed before, the long sequence induced by the mapping cone of a mor-
phism is a complex in the homotopic category (but not in the category of complexes).
This generalizes to triangulated categories. In particular, it follows that the category of
complexes cannot be triangulated (with respect to the usual shift functor and mapping
cones).
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2.5 Triangulated categories

Proposition 2.5.1 Let Kbe a triangulated category and

YN " T

be a distinguished triangle. Then the compositions { o @, p o and T(¢) o p are
Zero.

Proof. The axiom TR1 says that the cone of the identity morphism id; is zero. So, by
the axiom TR3, we have a dashed arrow making the diagram
T(L

L L > 0 )
lidL l@ i lT(idL)
L > N

M — 5— T(L)
commute. This proves that 1 o ¢ = 0. Now, the axiom TR2 says that the triangles

g

idy
5

\

4

g

WP

M N 2 1) X oy
and
N — 1) 22 vy X 2w

are distinguished. So, by applying what we just proved to these triangles, we obtain
pop=0and T(p)op=0. O]

Duality arguments abound in category theory, as we clearly saw in the chapter
about abelian categories. In order to use such arguments in our present context, we
need to know that the opposite of a triangulated category is also triangulated.

Proposition 2.5.2 Let K be a triangulated category and let D : K — K be the
contravariant functor sending each object to itself and inverting all the arrows. We
define an additive isomorphism of categories T : K* — K® asDo T 'oD~ ' and
we say that a triangle of K°? is distinguished if it is of the form

Dle), | DETe), pop
7 7 ’

where

is a distinguished triangle in K. Then K is a triangulated category.

Considering that the proof of this result amounts only to a formal verification of
the axioms, and that it won’t add new useful ideas or techniques to the arsenal of the
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2 Complexes and cohomology

reader, we won't write it here. In case the reader wants to see it anyway, a full proof
is available online on [37].

We also remark that the collection of distinguished triangles in K°? is motivated by
the fact that the axiom TR2 says that a triangle

L—25sM y N —2— T(L)

is distinguished if and only if its "reverse rotation"

Til(p) (0]

T-1(N) — s L s M Y

> N

is. By inverting the triangle above, we obtain a distinguished triangle in the opposite
category.

In the lingo of triangulated categories, the content of the proposition 2.2.3 is that
the functor H*® : K*(A) — C*(A) sends distinguished triangles to exact triangles. We
axiomatize this behavior.

Definition 2.5.3 Let K be a triangulated category and A be an abelian category. We

say that an additive functor H : K — A is cohomological is, for every distinguished

triangle

the sequence

is exact in A.

Since we can use the axiom TR2 to rotate our distinguished triangles, we obtain a
(infinite) sequence of distinguished triangles

L2 MY N "5 T(0)
M N — 1) 2 Tom)
N — 1) X vy 2™ 1Ny
TL) == 7om) 29 vy 2 2,

Moreover, we can make sure that in each triangle the first two morphisms don’t
have a minus sign. For example, the commutative diagram

—T(¢) —T(p)
— —

N —25 T(L) T(M) T(N)

lidN lidT(L] l— idt(m) lT(idN )

T(M) = T(N)
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2.5 Triangulated categories

shows that the third triangle is isomorphic to a triangle with the same objects but
whose first two morphisms "don’t have a minus sign". By applying a cohomological
functor H, we obtain a long exact sequence associated with our original distinguished
triangle

------------- » HL) ——2 s HM) —2 5 H(N)
H(p) j
L HTL)) 2 prv)) 2D TNy ceeeey

As we just hinted, the functor H' : K*(A) — A, for all i, is cohomological. But it
isn’'t by all means the only one. The proposition below gives two other cohomolog-
ical functors which will allow the use of the Yoneda lemma to study triangulated
categories.

Proposition 2.5.3 Let K be a triangulated category. Then, the functors
Homg(P,—) : K — Ab and Homg(—, P) : K — Ab,
for every object P of K, are cohomological.

Proof. We'll only prove the covariant statement, for Homg(—, P) = Homger (P, —) im-
plies the other. Consider the following distinguished triangle in K:

L2y M Y

y N —2— T(L).

In order to show that Homg (P, —) is cohomological, we need to prove that the induced
sequence

Homg(P,L) —— Homg(P,M) —— Homg(P, N)

is exact. Since P o ¢ = 0, due to the proposition 2.5.1, it suffices to show that for every
o : P — M such that{ o x = 0, there exists a morphism 3 : P — Lsuch that x = ¢ o f3.
Now, consider the diagram below:

P s T(P) —"% T(P)

> 0
- i?
M 1p>N 5 >T(L)mT(M).

Its lower row is a distinguished triangle, since it is nothing but our original triangle
rotated with help of the axiom TR2. The upper row is also a distinguished triangle by
the axioms TR1 and TR2. The axiom TR3 gives a morphism T(P) — T(L) making it
commute which, since T is fully-faithful, is of the form T(f3) for exactly one 3 : P — L.
Since the square on the right commutes, T(ot) = T(@) o T(B) = T(¢@ o ). This implies
that o« = @ o 3 and finishes the proof. O]
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2 Complexes and cohomology
We now prove a couple of interesting corollaries. The one below is a form of the
five lemma for triangulated categories.

Corollary 2.5.4 Consider the following morphism of distinguished triangles in a
triangulated category K:

L > M > N > T(L)
S O N
L’ > M/ > N/ > T(L'

If two of the vertical morphisms A, pu and v are isomorphism, then so is the third.

Proof. Without loss of generality, we may suppose that A and p are isomorphisms.
Let P be an object of K and H := Homg(P, —). By applying H, we get a commutative
diagram of abelian groups

H(L) —— H(M) —— H(N) —— H(T(L)) —— H(T(M))
lH lH(u) lH(V) lH lH
H(L') —— H(M’) —— H(N’) —— H(T(L")) —— H(T(M'))

which, due to the proposition above and its preceding discussion, has exact rows.
The five lemma (proposition 1.6.2) then implies that F(v) is an isomorphism of abelian
groups and, in particular, of sets. Since this holds for every P, the Yoneda lemma
implies that v is an isomorphism. O

If the reader prefers to avoid the Yoneda lemma, we can arrive at the same conclusion
in a direct way. Since

H(v) : Homg(P, N) — Homg (P, N)

X VoKX

is an isomorphism for all P, we can take P = N’ and conclude that there is some
o : N’ — N such that v o « = idn/. That is, v has a right inverse. The same argument
with the contravariant hom functor gives a left inverse to v, proving that it is an
isomorphism.

One corollary of the result above is that the cone of a morphism is unique up to
isomorphism.

Corollary 2.5.5 Let K be a triangulated category and ¢ : L — M be a morphism in
K. Then the cone N of ¢ is unique up to isomorphism.
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2.5 Triangulated categories

Proof. Suppose that N’ is another cone of ¢. The axiom TR3 gives a morphism
v : N — N’ making the diagram

e M YN _* T(L

L )
lidL lidM v lT(idL)
L

> M > N’ > T(L)

~

[0)

commute. The preceding corollary then implies that v is an isomorphism. O
We observe that the non-uniqueness in the induced morphism of the axiom TR3
implies that the isomorphism v above is not necessarily unique. In particular, the

cone of @ is not functorial in @. As discussed right after the definition 2.4.2, this is the
raison d’étre of the axiom TR4.

Corollary 2.5.6 Let K be a triangulated category and

be a distinguished triangle. Then ¢ is an isomorphism if and only if N is isomorphic
to the zero object.

1

Proof. Suppose that ¢ is an isomorphism, and let =" : M — L be its inverse. Since

two of the vertical morphisms in the diagram

LM Y5 N "5 T(I)

lidL lq)] l lT(idL)

L——1L > 0 » T(L)
idp

are isomorphisms, so is N — 0. Conversely, suppose that N is isomorphic to zero. By
rotating backwards our distinguished triangle, we obtain the diagram below

_ 71
TIN) ——® o e ypm YN
A N
0 > L idL>L > 0,

whose rows are distinguished triangles. The dashed morphism, induced by the axiom
TR3, is an isomorphism by the proposition above. The commutativity of the diagram
then implies that so is ¢. O

We’re now in position to explain why the homotopic category (and the derived
category) are usually not abelian. The reader may remember the next result as saying
that "in a triangulated category, monomorphisms and epimorphisms split".
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Proposition 2.5.7 Let Kbe a triangulated category. If ¢ : L — M isamonomorphism,
then there exists p : M — L such that po ¢ = id;. Dually, if Y : M — N is an
epimorphism, then there exists 0 : N — M such that{ o o = idn.

Proof. Suppose that ¢ : L — M is a monomorphism. By the axioms TR1(b) and TR2,
there exists a distinguished triangle of the form

T-'(N) y L —2 > M > N.

Due to the proposition 2.5.1, the composition T-'(N) — L — M is zero. But, since
@ is a monomorphism, it follows that T-'(N) — L is also zero. As Homg(—,L) is
cohomological, we get an exact sequence

Homg(M, L) —— Homg(L, L) ——2—— Homk(T~'(N), L),

which implies that Homg (M, L) — Homg(L, L) is surjective. In particular, there exists
p : M — L such that p o ¢ = id;. The other statement follows by duality. O

The proposition above says, in particular, that if K(A) is abelian, then every exact
sequence splits, due to the splitting lemma (theorem 1.4.1). In fact, this also implies
that every exact sequence in A splits.

Corollary 2.5.8 Let A be an abelian category and suppose that K(A) is abelian. Then
every exact sequence in A splits.

Proof. Let ¢ : A — B be a monomorphism in A and see this morphism in K(A). Since
we suppose that the homotopy category is abelian, we can factor ¢ as im ¢ o coim ¢
in K(A). As im ¢ is a monomorphism and coim ¢ is an epimorphism, the preceding
proposition gives morphisms p and o such that p o im ¢ = id and (coim @) o o = id.

Let x = 0op: B — A. Observe that « is in A, since A embeds fully faithfully in
K(A), and that

@ooo@=(im@ocoime)o(ocop)o (im ¢ ocoim @)
=im@ o (coim@ o 0)o(poim @) ocoim @

~~

id id

=1im @ o coim @ = @.

But ¢ is a monomorphism in A and so @ o @ = ida. The result then follows by the
splitting lemma. O

This result was proved only for the homotopy category, since we are yet to see the
formal definition of the derived category. But the reader will realize in due time that
the same argument also proves that if D(A) is abelian, then every exact sequence in A
splits.”

7An abelian category where every exact sequence splits is said to be semisimple.

86



3 The derived category

As hinted in the previous chapter, our goal is to eventually study the derived category
D(A), which will be constructed from the homotopy category K(A) by inverting all
the quasi-isomorphisms. Unlike homotopy equivalences, quasi-isomorphisms does
not define an equivalence relation, precluding us from defining D(A) by quotienting
the hom-sets as we did in the homotopy category. We shall need more powerful
machinery; the localization of categories.

3.1 Localization of categories

The main idea of this section is very simple: given a category C and a collection of
morphisms S in C, we will define a category S~'C, along with a functor Q : C — S~'C
sending all elements of S to isomorphisms in S~'C, and such that Q is universal with
this property. In other words, we’ll establish the following theorem.

Theorem 3.1.1 Let C be a category and S a collection of morphisms in C. Then
there exists a category S~'C and a functor Q : C — S~'C satisfying the following
properties:

(a) for every s € S, Q(s) is an isomorphism in S~'C;

(b) if F: C — Dis a functor such that F(s) is an isomorphism for every s € S, there
exists a unique functor S~'C — D making the diagram

cC—"+D

//"(
of -
S—'C

commute.

Moreover, S~'C is unique up to a unique isomorphism.

We say that S7'C is the localization of C with respect to S. Before going on to the
proof of this result, it is useful to understand how the explicit construction of S~'C
works. Let’s begin by posing that S~'C should have the same objects as C. As for the
morphisms, if M and N are objects of C, we define a path from M to N to be a diagram
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3 The derived category

of the form

fo $1 s2 s
M > Lq < L, < > Ln «—— N,

where Ly, ..., L, are objects of C, the arrows f; to the right are morphisms of C, and
the arrows s; to the left are elements of S. We denote such a path symbolically as
splofn 10208, os;'ofy. Now, in order for this representation to function as

it should, we define an equivalence relation on paths by imposing that compositions
behave well

fi, fi . . infi,
Li_4 5L » Lis1  isequivalentto Li; 1 Liq,
that we may ignore identities
fi idp 3 . . fi i
Li_q LN L L; » Lis1 isequivalentto L;i_; 5L > Ligq,
and that arrows to the left correspond to inverses
s s idm
M > N < M ) M—— M
are equivalent to
N+ M —5 N N 2 N,

We then define a morphism M — N in the localization S~ C to be an equivalence class
of paths from M to N. Composition of morphisms is given simply by concatenation.
Moreover, the identity morphism idy in S™'C of an object M is the equivalence class
of the path

idm

M —— M.

Finally, the functor Q : C — S7'C is given by the identity on objects and sends a
morphism f : M — N to the equivalence class of the path

M —— N.
We now verify all the formal details for the proof of our theorem.

Proof of theorem 3.1.1. First and foremost, we remark that we have indeed defined
an equivalence relation on paths and that S~'C is indeed a category. Also, the image
Q(s) of any morphism s : M — N in S is indeed an isomorphism in S~'C, whose
inverse is represented by

N +—— M.

As for the universal property, let F : C — D be a functor such that F(s) is an isomor-
phism for every s € S. We define a functor G : S~'C — D which is equal to F on
objects and sends the equivalence class of a path

fo

M » L1 <

$1

S2 S
L, « s L, «+—— N
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3.1 Localization of categories

to the composition

6111 6y )T . )]
FM) 1 Fry) B pry Bl ) ey el .

Since functors preserve composition and identities, this is independent of the choice
of representative. This functor indeed satisfies F = G o Q and, by construction, is
uniquely determined by F. The uniqueness of the localization follows as usual from
universal properties. O

As a quick corollary, we observe that localization behaves well with relation to the
opposite category.

Corollary 3.1.2 Let C be a category and S a collection of morphisms in C. The
category (S™'C)°P is isomorphic to the localization of C°P with respect to S°P.

Proof. Consider the functor Q° : C°? — (S~TC)°. It is clear that Q°P sends elements
of S° to isomorphisms. Now, if F : C°? — D is a functor sending elements of S° to
isomorphisms, its opposite F°P : C — D? sends elements of S to isomorphisms and
so factors through the localization S~'C:

FoP
c ", por

1
of
S-'C

The image of the diagram above by the opposite category functor gives the existence
of a unique functor (S~'C)° — D making the diagram

cP — D

T
op ///
Q l ///

(S7'C)ep
commute. The uniqueness of the localization then yields the desired result. O

The homotopy category K(A) is already the localization of C(A) with respect to the
collection of homotopy equivalences. In addition, we’ll define the derived category
D(A) as the localization of C(A) (or, as we’ve seen, K(A)) with respect to the collection
of quasi-isomorphisms. Before going any further, let’s check another interesting
example.

= Example 3.1.1 — Lie’s third theorem. Let LieGrp be the category of connected Lie groups
and LieAlg be the category of finite-dimensional Lie algebras. The tangent space at the
identity functor

LieGrp — LieAlg
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3 The derived category

is faithful and essentially surjective, but it isn’t an equivalence of categories. Indeed,
if ¢ : G — G’ is a covering map, its differential at the identity de¢ : g’ — g is an
isomorphism.

There are two ways of turning this functor into an equivalence of categories. Perhaps
the simplest way is to restrict its domain to the full subcategory of simply connected
Lie groups. But another way is to simply localize LieGrp with respect to all covering
maps.! Then the universal property of localization gives an equivalence of categories
between this localization and LieAlg. "

A huge collection of examples are of the following form.

» Example 3.1.2 — Reflective localization. Let D be a full subcategory of C. We say
that D is a reflective subcategory if the inclusion functor i : D — C admits a left adjoint
1:C — D. Let S be the collection of morphisms in C which are sent to an isomorphism
by r. Then D is equivalent to the localization S~'C. (Proposition 5.3.1 in [3].)

A plethora of examples of localization are of this form. The functor Grp — Ab
sending a group to its abelianization identifies Ab as a localization of Grp. Similarly,
the fraction field functor IntDom — Fld, from the category of integral domains and
injective morphisms to the category of fields, identifies Fld as a localization of IntDom.
The reader which already has some knowledge of algebraic geometry may appreciate
that both the sheafification functor and the functor

Sch — Aff
X +— SpecT'(X, Ox),

from the category of schemes to the category of affine schemes, are examples of
reflective localization. .

There are two issues with our notion of localization that ought to be addressed.
Firstly, the localization of a locally small category need not be locally small.? This may
be a problem for applying the Yoneda lemma, for example. Fortunately, almost all the
localizations we are interested in will be locally small. (We'll soon see that the derived
category of a locally small Grothendieck abelian category is locally small.)

Another problem with our notion of localization is that, if C is additive, it isnt clear
if S7'C is also additive or not. Indeed, how can we sum paths? We can solve this
problem by forcing every path from M to N to be equivalent to a path of the form

L
7N
M N,

!The reader may wonder if the composition of covering maps is still a covering map. Somewhat
surprisingly, this is false in general, but it holds for manifolds due to the theorem 2.11 in [28].

2Qr, using the formalism of Grothendieck universes, the localization of a category need not exist in
our fixed universe.
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3.1 Localization of categories

which we call a roof. We'll then conclude that any two roofs can be written with the
same morphism s on the right, allowing their sum.

Definition 3.1.1 — Multiplicative system. Let C be a category and S be a collection of
morphisms in C. We say that S is a left multiplicative system if it satisfies:

(LMS1) S is stable under composition and contains all the identities of C.

(LMS2) For any pair of morphisms f: L = NinCand s: L — M in S, there exists
g:M—=L'inCandt: N — L"in S making the diagram

commute.

(LMS3) For every pair of morphisms f,g: L -+ L’inCand s : M — Lin S such
that fos =gos, thereexistst: L’ — Nin Ssuchthattof=tog.

The conditions for a right multiplicative system are the same with all the arrows
reversed. We say that S is a multiplicative system if it’s both a right and a left
multiplicative system.

While the axiom LMS3 may seem somewhat technical, the other two axioms are
precisely what we need in order for every morphism in S~'C to be represented by a
roof. Indeed, if S is a left multiplicative system, the axiom LMS2 allows us to gather
all the inverse arrows on the right side of the path and the axiom LMS1 says that all
these inverse arrows become one single element of S.

Even better, we can detect equivalence of paths without ever leaving the realm of
roofs. Formally, there exists an equivalence relation ~; on roofs which induces a
dashed isomorphism making the diagram

{roofs from M to N} ————— {paths from M to N}

| }

{roofs from M to N}/ ~ ------------= > Homg 1c(M, N)

commute. We say that two roofs
L] LZ
M N M N
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are ~1 equivalentif there exists an object L in C and morphismsp; : Ly = L,p,: L, = L
making the diagram

commute and such that p, os, = p; o s7 is in S. We observe that, if S is a right
multiplicative system, every morphism in S~'C can be represented by a trough

MXL/N

and we have a similar relation ~g for such diagrams. The next proposition proves all
these claims. Since a right multiplicative system on C is nothing but a left multiplica-
tive system on C°?, we’ll henceforth only cite and prove results for left multiplicative
systems, for analogous results hold by duality.

Proposition 3.1.3 Let S be a left multiplicative system in a category C, and let M, N
be two objects of C. Then ~| is an equivalence relation on the collection of roofs
from M to N. Moreover, the canonical morphism sending a roof to a morphism in
S~'C descends to the quotient defining an isomorphism

Homg 1c(M, N) = {roofs from M to N}/ ~ .

Proof. O

In precisely the same way that we sum fractions by writing them with a common
denominator, we can write any two roofs with a single morphism s on the right.

Proposition 3.1.4 Let S be a left multiplicative system in a category C. Every two
morphisms M — N in S~'C may be written as the equivalence classes of s~' o f
and s~ o g for suitable morphisms f,gin Cand s € S.

Proof. N

Besides allowing the sum of two morphisms in a localization of a preadditive
category, the above writing also allows us to easily decide whether two morphisms in
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the localization are equal. We claim that two morphisms in S~'C represented by the

roofs
L L
LN N
M N M N

are equal if and only if there exists a morphism q : L — Lin C such that qos € S and
q o f; = qof,. Indeed, both roofs are equivalent if and only if there exist morphisms
p1:L—L"and p, : L — L’ making the diagram

commute and such that p, o s = p; o sisin S. If there exists such a morphism ¢, we
may take p; = p, = q. Conversely, the axiom LMS3 gives a morphism t € S such that
top, =top; and we may take q to be this common morphism.

Corollary 3.1.5 Let S be aleft multiplicative system in a preadditive category A. Then
S~'A is also preadditive, and the localization functor Q : A — S~'A is additive.
Moreover, if B is another preadditive category and F : A — B is an additive functor
such that F(s) is an isomorphism for every s € S, the induced morphism S™'A — B
is also additive. If A is additive, then so is S~ 'A.

Proof. N

We're finally able to explain the raison d’étre of the nomenclature and notation used
in this section.

m Example 3.1.3 — Localization of noncommutative rings. Let A be a (not necessarily com-
mutative) ring. We define a category A which only has one object * and such that
Homp (*, %) = A. Thisis a preadditive category and, in this context, a left multiplicative
system S on A is a subset of A such that

(a) Sis multiplicatively closed and contains 1;
(b) for every a € A and s € S, the set As N Sa is nonempty;
(c) forevery a € Aand s € S, if as =0, then ta = 0 for some t € S.

A particular case of the preceding corollary proves the existence of localizations for left
multiplicative systems on any ring. Thisis a very important result on noncommutative
ring theory. ]
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For our next result, let C be a category and S be a left multiplicative system on C.
Given an object N in C, we define a category N/S whose objects are morphisms N — L
in S and whose morphisms are commutative diagrams

N

> LZ)

where the arrow L; — L, isin C.

Corollary 3.1.6 Let S be a left multiplicative system in a category C. Then we may
write Homg 1c(M, N) as the filtered colimit

colim Homg(M,L).
(N—L)eN/s

In particular, the localization functor Q : C — S~'C commutes with finite colimits.
Similarly, if S is a right multiplicative system, Q commutes with finite limits.

Proof. N

As with (pre)additive categories, a localization of an abelian category with respect
to a multiplicative system is still abelian and satisfies a stronger universal property.

Proposition 3.1.7 Let S be a multiplicative system in an abelian category A. Then
S~TA is also abelian, and the localization functor Q : A — S~'A is exact. Moreover,
if B is another abelian category and F : A — B is an exact functor such that F(s) is
an isomorphism for every s € S, the induced morphism S~'A — B is also exact.

Proof. N

There’s another point of view which is often used when dealing with localizations
of abelian categories. For that we need the definition below.

Definition 3.1.2 — Thick subcategory. Let A be an abelian category. We say that a
non-empty full subcategory B of A is thick if for any short exact sequence

0 s A s B s C s 0

in A, Bisin B if and only if A and C are.

Due to the corollary 1.2.2, a thick subcategory is always abelian. The raison d’étre of
such subcategories is the result below.
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Proposition 3.1.8 Let A be an abelian category. Given a multiplicative system S in A,
the full subcategory Bs, composed of the objects which are isomorphic to 0in S~ 'A,
is thick. Conversely, given a thick subcategory B, the collection Sg of all morphisms
@ in A such that ker ¢ and coker ¢ are in B is a multiplicative system.

Proof. O

Motivated by the proposition above, we define the quotient A/B of an abelian cate-
gory A by a thick subcategory B as the localization S 'A. These quotients are often
called Serre quotients in the literature.

Given an exact functor F : A — B between abelian categories, its kernel is the full
subcategory of A composed of the objects whose image by F is zero. It’s clear that
the kernel of an exact functor is thick. As in basically every algebraic category, the
existence of quotients gives the converse. In this case, the last two propositions imply
that every thick subcategory B of A is the kernel of some exact functor. Namely, the
quotient / localization functor Q : A — A/B.

In due time, we'll see that many interesting abelian categories are Serre quotients
of A-Mod, for some (not necessarily commutative) ring A. (Theorem ??.) We present
two other examples of Serre quotients.

= Example 3.1.4 Let S be a multiplicative subset of a ring A and B be the category of
A-modules whose elements are annihilated by some element of S. It’s clear that B is
a thick subcategory of A-Mod. We affirm that S~'A-Mod is canonically equivalent to
A-Mod/B.

Let f: A — S7TA (resp. Q : A-Mod — A-Mod/B) be the localization map (resp.
functor). The functor f* : A-Mod — S~'A-Mod, whichsends Mto M®AS~'A = S™'M,
is exact and maps elements of B to zero. The universal property then implies that it
descends to an exact functor f* : A-Mod/B — S~'A-Mod.

Denoting by f. : S~'A-Mod — A-Mod the restriction of scalars functor, the adjunc-
tion f* - f, gives rise to another adjunction f* 4 Q o f,. The unit of the latter is a
natural isomorphism, which proves that f* is fully faithful. Finally, it’s also essen-
tially surjective since the restriction of scalars of a S~' A-module N to A is sent to an
isomorphic copy of N. This finishes the proof.

In particular, the quotient of Ab by the thick subcategory of torsion groups is
equivalent to Q-Vect. "

The reader that already knows some algebraic geometry may be pleased to know
that the basic theory of quasicoherent sheaves on projective schemes may be phrased
using Serre quotients.

= Example 3.1.5 Let A be a N-graded ring, which is finitely generated by A; as an Ao-
algebra, and X = Proj A. We denote by A-GrMod the category of graded A-modules
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M such that @ 4-,, Mg is finite for some n. The usual tilde functor
r: A-GrMod — QCoh(X)
M~ M

is exact and its kernel, denoted by A-GrMod, is composed by the modules M satisfying
Mgy = 0 for all d large enough. [22, Proposition 2.7.3] The tilde functor r admits a
right adjoint I, defined by

L(F) = @PrX Zm),

nez

which is fully faithful due to the fact that the counit

e~ —

l(F) = F

is a natural isomorphism. Then, the formalism of example 3.1.2 implies that r factors
through the quotient and that

A-GrMod/A-GrMod, — QCoh(X)

is an equivalence of categories. .
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